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Introduction

AUTOMOTIVE INDUSTRY

Environment protection

• Reduce fuel consumption 

• Reduce CO2 emissions

Safety specifications

• Increase crashworthiness 

• Improve passengers' safety

Recent challenges of the sheet metal forming processes

• Adoption of new materials and innovative manufacturing processes 

• Hot stamping process of ultra high strength steels 

• Warm stamping process of aluminum alloys
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• Allows to improve the formability and reduce the springback effect

• Ideal for complex automotive structural components such as B-pillars

• Thinner parts with better mechanical properties

• Reduce the vehicle weight while increases the safety standard

Warm and hot stamping processes

Hot stamping of a high strength steel

(Benchmark 3 - Numisheet 2008)

Warm forming of a magnesium alloy 
(Benchmark 2 - Numisheet 2011)
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• Numerical simulation is an indispensable tool in the development of new 

automotive components manufactured by forming

• Finite element modelling of hot/warm forming processes is very complex 

due to the highly non-linear material behavior, thermo-mechanically coupled 

characteristics and frictional contact conditions

Numerical simulation

Mechanical 

analysis

Thermal 

analysis

Temperature 

distribution

Material 
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Stress/strain 

distribution

Contact 

conditions
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Coupling strategies currently used in the finite element method simulation of 

thermo-mechanical problems:

 Monolithic strategy

• Mechanical and thermal problems solved simultaneously 

• Single system of equations (displacements and temperatures)

• Complex implementation

 Staggered strategy

• Mechanical and thermal problems solved sequentially

• Two systems of equations (strategy to exchange information between 

thermal and mechanical solutions)

• Allow to use FE codes already developed (simple implementation)

Thermo-mechanical coupling 



NUMISHEET 2016
Marriott Bristol City Centre Hotel, Bristol, UK

D.M. Neto
diogo.neto@dem.uc.pt 

6

Finite element code specifically developed to simulate 

(cold) sheet metal forming processes

Main features:

• Quasi-static nonlinear analysis with implicit time 

integration (Newton−Raphson)

• Elasto-plastic behavior (large strains)

Objective:

Incorporate thermo-mechanical effects, such as 

thermal conduction, heat generation by plastic 

deformation, thermal expansion and thermal softening

DD3IMP finite element code 

Correction 
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Isothermal split methodology: the mechanical problem is solved at constant 

temperature while the thermal problem is solved for a fixed configuration

 Explicit coupling algorithm 

• The mechanical problem is solved using the temperature field obtained in 

the previous increment

 Implicit coupling algorithm 

• In each time increment, an iterative procedure between mechanical and 

thermal problems is adopted until attaining a convergence criterion

Staggered strategy
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• Mechanical problem solved using the 

temperature field of the previous increment

• Delay between mechanical and thermal 

problems

• Exchange of information between mechanical 

and thermal problems only once in each 

increment

• Low computational cost

Explicit coupling algorithm  

Solve thermal 

problem

Solve mechanical 

problem

Input data

Output data

t = t+∆t

End
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• Exchange of information between mechanical 

and thermal problems within an iterative 

procedure (several times in each increment)

• Guarantee the thermo-mechanical 

equilibrium (higher accuracy in the solution)

• High computational cost due to the iterative 

procedure (mechanical ↔ thermal) within 

each increment 

Implicit coupling algorithm  

Solve thermal 

problem

Solve mechanical 

problem

Input data

Output data

Conv?

t = t+∆t

End
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• Split each increment in 2 phases: 

prediction phase (explicit solution) and 

correction phase (implicit solution)

• Prediction phase: solve the thermal 

problem (plastic and frictional power 

from the previous increment) before the 

mechanical problem

• Correction phase: solve the mechanical 

problem (using trial temperature field) 

before the thermal problem

Proposed coupling algorithm  
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• Prescribed displacement (8 mm) using 

constant velocity (1 mm/s)

• 1/8 of the model (symmetry conditions)

• 960 hexahedral finite elements (SRI in 

mechanical problem and FI in thermal 

problem)

• Initial temperature: 293 K

• Thermal isolated bar (heat generated by 

plastic deformation)

• Thermal softening (decrease of the flow 

stress)

Tensile test of a cylindrical bar

Prescribed temperature

T=293 K 
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• Decrease of the flow stress in the middle of the bar induced by the heat 

generated by plastic deformation (thermal softening)

• Occurrence of necking due to the temperature gradient

• Higher temperature in the middle of the bar

Tensile test of a cylindrical bar

Temperature

t = 3 s

t = 6 s

t = 8 s
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• Comparison between coupling algorithms (Implicit, Explicit and Proposed)

• The relative error (considering the implicit coupling strategy as reference) is 

approximately two times lower using the proposed algorithm than the explicit 

coupling algorithm

Tensile test of a cylindrical bar
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• The computational time required by the proposed algorithm is only slightly 

large one required by the explicit coupling algorithm

• The computational cost of the implicit coupling algorithm is twice the time 

required by the proposed algorithm

Tensile test of a cylindrical bar

Coupling algorithm Implicit Explicit Proposed

Computational time [s] 63 27 28
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• AA5754-O aluminum alloy

• Blank with Ø60 mm and 1 mm thickness

• Constant forming velocity (1 mm/s)

• 1/4 of the model (symmetry conditions)

• 9068 hexahedral finite elements (SRI in 

mechanical problem and FI in thermal 

problem)

• Hockett-Sherby hardening law and the 

Hill'48 anisotropic yield criterion

• Initial blank temperature: 200ºC

• Forming tools at constant temperature 

Warm forming of a cylindrical cup
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• Comparison between implicit and proposed 

coupling algorithms (identical results)

• Required about 500 increments (large strains, 

thermo-elasto-plastic behavior and frictional 

contact) 

Warm forming of a cylindrical cup

Proposed algorithm

Implicit algorithm

Plastic 

strain
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• Evolution of the temperature in the blank: rim (Node 1) and center (Node 2) 

Warm forming of a cylindrical cup
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Conclusions

• A new staggered algorithm for thermo-mechanical coupling is presented, which 

was implemented in DD3IMP finite element code (static implicit)

• Split each increment in 2 phases: prediction phase (explicit solution) and 

correction phase (implicit solution)

• The computational cost of the proposed algorithm is identical to the explicit 

coupling algorithm, while the accuracy is significantly higher

• Validation of the proposed algorithm using a warm forming example, where 

the temperature distribution presents a strong effect on the mechanical 

behavior
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