


### Automatic correction of the time step in implicit simulations of thermomechanical problems

#### J.M.P Martins<sup>1</sup>, J.L. Alves<sup>2</sup>, D.M. Neto<sup>1</sup>, M.C. Oliveira<sup>1</sup>, and L.F. Menezes<sup>1</sup>

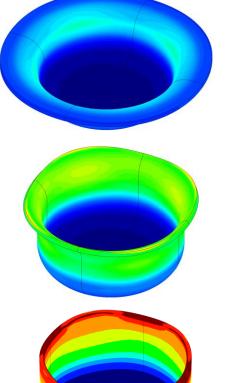
<sup>1</sup> CEMUC, Department of Mechanical Engineering, University of Coimbra <sup>2</sup> MEMS, Microelectromechanical Systems Research Unit, University of Minho



### NUMIFORM 2016

The 12<sup>th</sup> International Conference on Numerical Methods in Industrial Forming Processes






- □ Introduction
- □ Thermomechanical coupling
- □ The in-house DD3IMP solver
- □ Classical algorithms
- Proposed algorithm
- □ Numerical examples
- Conclusions



## **INTRODUCTION**

- The numerical modelling of thermomechanical systems is of high practical importance in many industrial applications.
- In fact, the prediction of temperature and stress fields is a key factor for various manufacturing processes, e.g. in the warm sheet metal forming.
- The development and implementation of numerical models to deal with thermomechanical problems is a challenge, since the interdependence between the thermal and the mechanical fields requires an efficient coupling strategy.





## **THERMOMECHANICAL COUPLING**

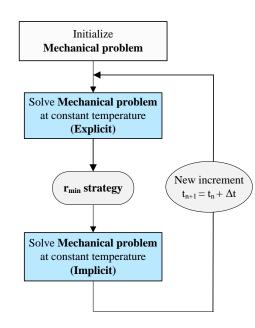
The treatment of thermomechanical problems through the finite element method can be carried out using two coupling strategies:

### Monolithic strategy

- Single system of equations
- Unconditional stability

### Staggered strategy

- Two system of equations
- Requires a strategy for the exchange of information between the two systems
- Allow to reuse software already developed


THE IN-HOUSE DD3IMP SOLVER

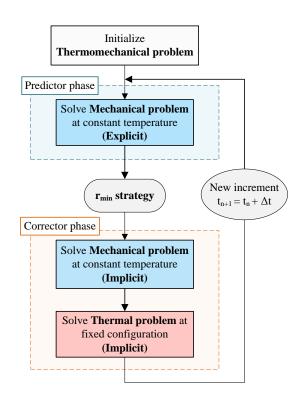


NUMIFORM 2016

- Elastoplastic formulation
- Update lagrangian scheme
- Hypoelastic law for the material behaviour description
- Fully implicit algorithms with Newton-Raphson method

Extended to incorporate, heat conduction and thermomechanical effects, such as heat generation by plastic deformation, thermal expansion and thermal softening



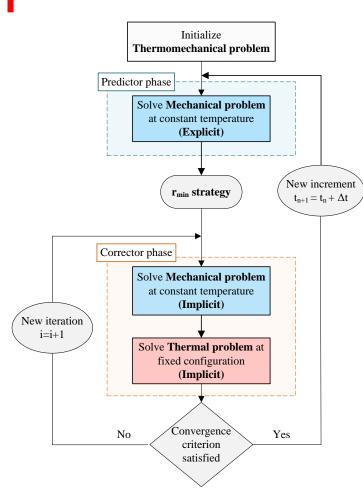

Centre for Mechanical Engineering,



**University of Coimbra** 



## **CLASSICAL ALGORITHMS**



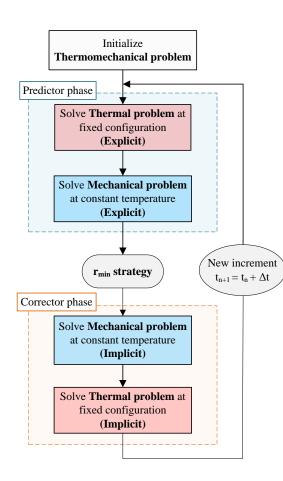

### **Explicit algorithm - MMT**

- Developed to reach a low computational cost
- Comprises the interchange of information between the two fields only once at each increment.
- Since the mechanical problem is solved using the temperature of the previous increment, there is always a delay between the two problems.



### **CLASSICAL ALGORITHMS**




#### Iterative algorithm - MMIT

- Developed to reach higher accuracy on the results.
- Comprises the interchange of information between the two fields through an iterative procedure.
- Fully converged solution.
- Higher computational cost.

J.M.P Martins Joao.pmartins@dem.uc.pt



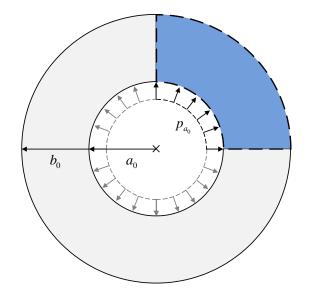
### **PROPOSED ALGORITHM**



### **Proposed algorithm - TMMT**

- Developed to reach a better compromise between computational cost and accuracy of the results.
- Two distinct phases: prediction and correction
  - **Prediction phase:** Explicit method for the mechanical problem and afterwards for the thermal problem.
  - R-min strategy
  - Correction phase: Implicit method for the mechanical problem and afterwards for the thermal problem.




## **NUMERICAL EXAMPLES**

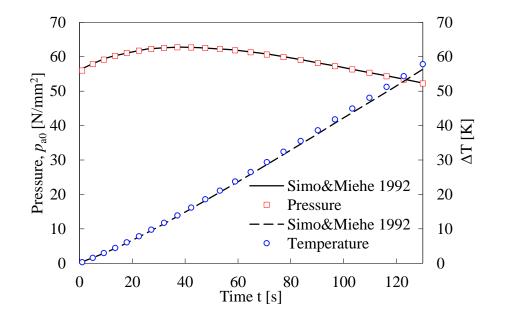
### Expansion of a thick-walled cylinder

(adapted from Simo and Miehe (1992))

#### Numerical example conditions:

- A thick walled cylinder infinite long, along the axial direction.
- It is subjected to a internal pressure (replaced by a radial displacement).
- The cylinder is assumed adiabatic (no heat exchanges with the environment).
- The only source of heat in this case is the heat generated by plastic deformation






## **NUMERICAL EXAMPLES**

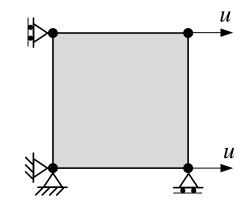
#### **Results anslysis:**

NUMIFORM 2016

- The temperature increases during the loading, due to the heat generated by plastic deformation.
- The numerical results are in very good agreement with the results obtained by Simo and Miehe (1992).



Relative temperature evolution and internal pressure evolution.




## **NUMERICAL EXAMPLES**

Single element tensile test – r<sub>min</sub> strategy activated/deactivated

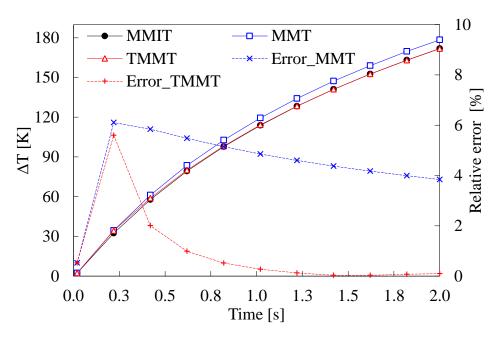
#### Numerical example conditions:

- Single finite element [1x1x1 mm<sup>3</sup>].
- It is subjected to a tensile stress state, by imposing a displacement of *u* = 2 mm, at constant velocity *v* = 1 mm/s.
- The element is assumed adiabatic (no heat exchanges with the environment).
- The only source of heat in this case is the heat generated by plastic deformation.





## **NUMERICAL EXAMPLES**


#### **Results analysis:**

NUMIFORM 2016

- The proposed algorithm (TMMT) uses the information of the last increment to determine the temperature field in the Prediction Phase.
- After the second increment, the error is significantly reduced for the TMMT algorithm.

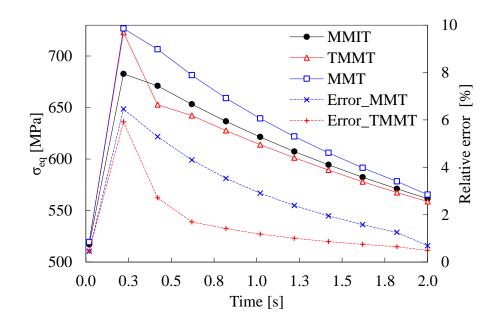
**Note:** The relative error was evaluated considering the iterative solution as reference (MMIT), since this is the most accurate.

### r<sub>min</sub> strategy deactivated



Relative temperature evolution obtained with the MMIT, MMT and TMMT algorithms, including relative error.




## **NUMERICAL EXAMPLES**

#### **Results analysis:**

NUMIFORM 2016

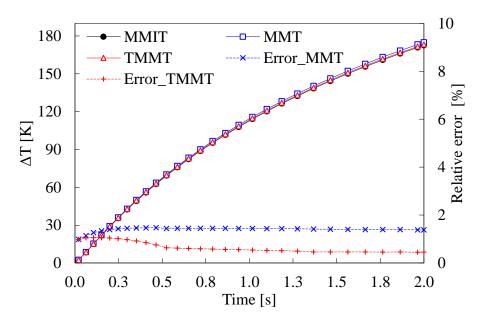
- The equivalent tensile stress decreases with the temperature increase, consequence of the softening effect.
- The equivalent stress is underestimated for the TMMT algorithm, but the error is always lower for it.

### r<sub>min</sub> strategy deactivated



Equivalent (von Mises) stress evolution obtained with the MMIT, MMT and TMMT algorithms, including relative error.




## **NUMERICAL EXAMPLES**

#### **Results analysis:**

NUMIFORM 2016

- The activation of the rmin strategy leads to a global decrease of the time step.
- The accuracy of all algorithms is improved.
- However, the TMMT algorithms gives a lower error than the MMT.

### r<sub>min</sub> strategy activated

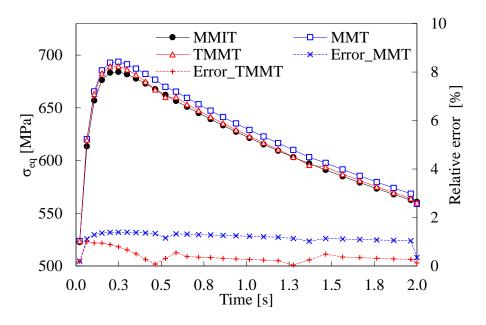


Relative temperature evolution obtained with the MMIT, MMT and TMMT algorithms, including relative error.



**University of Coimbra** 

**Centre for Mechanical Engineering**,


## UMERICAL EXAMPLES

#### **Results analysis:**

NUMIFORM 2016

- The activation of the rmin strategy leads to a global decrease of the time step.
- The accuracy of all algorithms is improved.
- However, the TMMT algorithms gives a lower error than the MMT.

### r<sub>min</sub> strategy activated



Equivalent (von Mises) stress evolution obtained with the MMIT, MMT and TMMT algorithms, including relative error.



## **SUMMARY**

- A new staggered coupling algorithm, based on a isothermal approach, was proposed, in which both the thermal and the mechanical problem are solved sequentially.
- The finite element code developed has been validated using a classical numerical example.
- The performance of the proposed algorithm was discussed and compared with the one of classical strategies.



# Thank you



The authors gratefully acknowledge the financial support of the Portuguese Foundation for Science and Technology (FCT) under projects with reference UID/EMS/00285/2013, PTDC/EMS-TEC/0702/2014 (POCI-01-0145-FEDER-016779) and PTDC/EMS-TEC/6400/2014 (POCI-01-0145-FEDER-016876) by UE/FEDER through the program COMPETE2020. The second author is also grateful to the FCT for the Postdoctoral grant SFRH/BPD/101334/2014.





UNIÃO EUROPEIA

de Desenvolvimento Regional

