

Prediction of wrinkling and springback in sheet metal forming

D.M. Neto¹ • M.C. Oliveira¹ • J.L. Alves² • A.D. Santos³ • L.F. Menezes¹

¹CEMUC, Department of Mechanical Engineering, University of Coimbra, Portugal ²CMEMS, Department of Mechanical Engineering, University of Minho, Portugal ³FEUP, Faculty of Engineering, University of Porto, Portugal

NUMIFORM 2016

The 12th International Conference on Numerical Methods in Industrial Forming Processes

Introduction

- Sheet metal forming processes are widely used in the automotive industry
- Major concerns are the environmental protection and the safety specifications
- Adoption of new materials such as high-strength steels and aluminum alloys
- The numerical simulation allows the shortening of development cycles

Forming defects

New materials are more prone to develop forming defects:

- Springback
- Wrinkling and buckling
- Necking and fracture
- Surface marks

Benchmark 4 - Numisheet 2014

Benchmark 4 - Numisheet 2011

Diogo M. Neto diogo.neto@dem.uc.pt NUMIFORM 2016 University of Technology of Troyes, France

Experimental procedure

Sheet metal forming of a rail prone to 2D springback and wrinkling

- Clamping the blank (300x300x1mm) between the die and the blank-holder with 90 kN, using six nitrogen gas springs connected
- Punch stroke of 60 mm, while increasing the blank-holder force from 90 to

130 kN

- In-house static implicit finite element code DD3IMP
- Geometry of the forming tools (rigid) modelled by Nagata patches
- Friction coefficient dependent of the normal contact pressure

Diogo M. Neto diogo.neto@dem.uc.pt

NUMIFORM 2016 University of Technology of Troyes, France

- Fitting the numerical model to experimental data from the flatdie tests
- The value of the friction coefficient decreases with the increase of the contact pressure

NUMIFORM 2016 University of Technology of Troyes, France

- Hardening behavior described by the Swift law with kinematic hardening (A-F)
- Plastic anisotropy described by the Hill 1948 yield criteria

- Blank discretized with linear hexahedral finite elements
- Modelling both 1/4 of the blank (symmetry conditions) and the full blank geometry (slightly rotated)
- The full blank comprises 130,000 finite elements

1/4 of the blank32,500 finite elements

NUMIFORM 2016 University of Technology of Troyes, France

Forming forces

Comparison between experimental and numerical force evolution

Mild steel (DC06)

NUMIFORM 2016 University of Technology of Troyes, France

Final geometry of the rail (DC06)

- Influence of applied symmetry conditions on the geometry of the wrinkles
- Asymmetrical wrinkle considering the full blank geometry

Final geometry of the rail (DP600)

- Influence of applied symmetry conditions on the geometry of the wrinkles
- Anti-symmetrical wrinkle considering the full blank geometry

Rail measurements

• Four section profiles of the rail are measured after springback, for each material

3D coordinate measuring machine

Section profile A (x=15 mm)

Comparison between experimental and numerical section profile

The springback is larger on the rail of high strength steel (DP600)

Section profile B (x=95 mm)

Comparison between experimental and numerical section profile

Considering the mild steel, the two numerical models predict distinct geometries for the wrinkle

Springback angle of the flange

- Both finite element models provide identical predictions for the flange angle
- The springback is significantly larger on the rail of high strength steel (DP600)
- The springback angle is slightly overestimated by the numerical model

Material	Section A		Section B		
	Exp. [°]	Simul. [º]	Exp. [°]	Simul. [º]	
DC06	3.8	5.1	3.9	6.2	
DP600	11.9	13.6	11.7	12.6	

Section profile L1 (y=0 mm)

Comparison between experimental and numerical section profile

Considering the full blank geometry, the numerical predictions are in good agreement with the experimental measurements

Section profile L2 (y=-30 mm)

Comparison between experimental and numerical section profile

Considering the full blank geometry, the numerical predictions are in good agreement with the experimental measurements

Computational performance

- The full blank geometry leads to a significant increase of the computational cost
- The computational time of the numerical simulations is at least 10 times higher using the full blank
- The computational cost is significantly influenced by the material considered for the blank

	DC06		DP600	
	1/4 model	Full model	1/4 model	Full model
N° increments	1823	4839	776	1544
Average nº iterations	9.4	8.4	10.1	9.1
Computational time [h]	30.3	384.7	10.0	105.7

Conclusions

- Influence of applied boundary conditions on the wrinkling prediction:
 - > 1/4 of the blank geometry considering symmetry conditions
 - > full blank geometry slightly rotated in relation to the forming tools
- Both finite element models provide identical results for the springback, but the shape of the wrinkle depends on the adopted numerical model
- The numerical results are in better agreement with the experimental ones when the full blank geometry is considered
- The computational cost considering the full blank is at least 10 times higher than using 1/4 of the blank

THANK YOU!

Acknowledgements

This research work was sponsored by national funds from the Portuguese Foundation for Science and Technology (FCT) under the projects with reference PTDC/EMS-TEC/0702/2014 (POCI-01-0145-FEDER-016779) and PTDC/EMS-TEC/6400/2014 (POCI-01-0145-FEDER-016876) by UE/FEDER through the program COMPETE2020

de Desenvolvimento Regional

