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Abstract. Most of sheet metal forming processes comprise intermediate trimming operations to 

remove superfluous material. These operations are required for subsequent forming operations. 

On the other hand, the springback is strongly influenced by the trimming operations that change 

the part stiffness and the stress field. From the numerical point of view, this involves the 

geometrical trimming of the finite element mesh and subsequent remapping of the state variables. 

This study presents a remapping method based on Dual Kriging interpolation, specifically 

developed for hexahedral finite elements, which has been implemented in DD3TRIM in-house 

code. Its performance is compared with the one of the Incremental Volumetric Remapping 

method, using the split-ring test to highlight their advantages and limitations. The numerical 

simulation of the forming processes is performed with DD3IMP finite element solver. 

1.  Introduction 
Typically, the finite element simulation of multi-stage sheet metal forming processes requires the 

modification of the blank geometry, which is the consequence of trimming operations. Therefore, some 

remapping procedure is required to transfer the state variables from the old mesh to the new one, 

including the ones evaluated at the integration points, within each finite element [1]. The number of 

state variables depends on the constitutive model adopted, but usually includes the current flow stress, 

the stress field, the plastic strain, etc. 

The remapping methods can be divided into four groups [2]. The first group refers to pointwise 

interpolation and extrapolation methods, where the variables are transferred from the old mesh to the 

new one using a function that interpolates/extrapolates the variables. The second group refers to the 

area/volume weighted averaging methods, which use the area/volume intersection between the old and 

the new mesh to define weighting factors, expressing the contribution of each finite element from the 

old mesh to the new one. The third group refers to mortar element methods, which are general techniques 

for projecting data at interfaces between non-conforming subdomains [3]. From a mathematical point 

of view, this method comprises the minimization of a weighted residual, where the weight functions are 

usually chosen from the space spanned by the basis functions of the mortar side. The last group refers 

to specialized methods, which are designed for specific applications [4]. 

This study presents and compares two distinct remapping methods for finite element meshes 

composed by linear hexahedral elements, namely the Incremental Volumetric Remapping (IVR) [5] and 
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the Dual Kriging (DK) [6]. Both methods were implemented in the in-house code DD3TRIM, which 

was specifically developed to perform trimming and remapping operations involved in the multi-stage 

sheet metal forming processes. In order to assess the performance of each remapping method, the 

springback of an aluminum alloy is quantified, using the split-ring test example. 

2.  Remapping algorithms 
The accuracy and the computational performance are key points of any remapping algorithm. In fact, 

the remapping operation introduces errors in the new mesh, due to the approximation of the state 

variables. In order to try to control and reduce the error arising from the remapping operations, several 

authors point out some desirable characteristics. The method should be self-consistent, guarantee the 

locality and avoid spurious local extreme values. Accordingly, the IVR and the DK methods are 

described in detail, where the old and the new finite element meshes are denoted by donor and target 

mesh, respectively [2,7]. 

2.1.  Incremental volumetric remapping 

The IVR method is based on the concept that the value of each state variable, at the region corresponding 

to a Gauss volume (an eight part of the standard brick element), is equal to the state variable of the 

correspondent Gauss point. Therefore, the variable value assigned to a given Gauss point of the target 

mesh element is evaluated based on a weighted average of the values of the donor mesh [5]. Hence, the 

value of the state variable α  in a Gauss point i of the target mesh is given by: 
3
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where ng denotes the number of donor Gauss volumes that contributes for the target Gauss volume i. 

ij
w  is the fraction of the target Gauss volume i, contained within the donor Gauss volume j, and j

α  is 

the value of the state variable in the donor Gauss volume j. The target Gauss volume is partitioned in nl 

equal subdivisions in each direction (see Figure 1 (c)), in order to approximate the fraction of the target 

Gauss volume contained in each donor Gauss volume (see Figure 1 (d)). The weight function ij
w  is the 

fraction between the summation of the elementary volumes k

ijv  of the target Gauss volume i, contained 

in the donor Gauss volume j, and the total volume of the target Gauss volume i, denoted by total

iv .  

 

Figure 1. Schematic representation of the IVR method: (a) finite element mesh; (b) subdivision of 

each element into 8 Gauss volumes; (c) subdivision of the target Gauss volume; (d) intersection 

between target and donor Gauss volumes. 

2.2.  Dual-Kriging method 

The Dual Kriging method is applied in the present study to remap the state variables between different 

finite element meshes. This method provides an explicit parametric interpolation, allowing to evaluate 

the value of the state variables in any point (Gauss points of the target mesh). In order to reduce the 

computational effort, only the donor Gauss points neighboring to the target Gauss point under analysis 

are selected and used [6]. The general form of the DK model is decomposed into the sum of two terms:  

Finite element mesh
Gauss volume

nl=4

Finite element
Gauss volume of 

donor mesh

Gauss volume of 

target mesh
(a) (b) (c) (d)
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where ( )d x  denotes the global trend function (polynomial) and ( )f x  represents the fluctuation or 

deviation function, which captures the local deviations from the trend function. The fluctuation depends 

on the n donor Gauss points used to calculate the state variables in the target Gauss point. Indeed, it is 

constructed using n parameters ib , which are weighted by the generalized covariance function ( )iK h  

associated with each donor Gauss point. The accuracy of the DK method is affected by the covariance 

function selected. In the present study, it is simply the Euclidean distance between the target Gauss point 

and the donor Gauss point. The n parameters ib  and the four parameters id  (the last term 4d z  disappears 

for 2D applications) are determined by solving a system of n+4 linear equations, which has to be solved 

only once for each target Gauss point. Then, the interpolated value of all state variables is computed. 

For each target Gauss point, the set of donor Gauss points located in its region of influence must be 

selected. Since the sheet metal forming simulation is the main application of the proposed remapping 

method, the selection method is carried out by layers through the thickness, i.e. only the donor Gauss 

points located in the same layer of the target Gauss point are considered. Accordingly, the DK method 

is applied in a 2D framework, where each donor Gauss point is projected into a plane defined by the 

finite element of the donor mesh containing the target Gauss point. Considering a structured 

discretization, nine is the maximum number of donor Gauss points selected (based on the mesh 

connectivity).  

3.  Trimming example 
The split-ring test was used to measure the effect of the remapping method on the springback prediction. 

The cylindrical cup forming (fully draw) was carried using the aluminum alloy AA5754-O [8]. The 

opening diameter of the die is 35.25 mm and the punch diameter is 33 mm, while the shoulder radius of 

both the die and the punch is 5 mm. The circular aluminum blank presents 60 mm of diameter and 1 mm 

of thickness. The residual stress state is evaluated by measuring the opening of a ring (7 mm high) cut 

from the sidewall of the formed cylindrical cup (8 mm from the bottom). 

The finite element simulation of the forming operation was performed with the in-house static 

implicit finite element code DD3IMP [9], while the ring cut and splitting was performed with the in-

house code DD3TRIM [10]. The plastic behavior of the sheet is described by the isotropic work 

hardening (voce law) and isotropic yield criterion (von Mises). Only half model is simulated, allowing 

to perform the discretization of the blank with 30.237 solid finite elements (3 layers through the 

thickness). The von Mises stress distribution in the cylindrical cup is presented in Figure 2 (a), showing 

the position of the ring cutting. The von Mises stress distribution in the ring, obtained with the IVR and 

DK remapping methods is presented in Figure 2 (b) and (c), respectively. Both methods provide identical 

results for the state variables, in agreement with the variable distribution before the cutting and 

remapping operations (see Figure 2). 

 

 

Figure 2. von Mises stress distribution in the: (a) formed cylindrical cup; (b) ring before splitting 

using the IVR method; (c) ring before splitting using the DK method. 

Numisheet IOP Publishing
Journal of Physics: Conference Series 734 (2016) 032046 doi:10.1088/1742-6596/734/3/032046

3



 

 

 

 

 

 

The springback of the ring after cutting and splitting operations is strongly affected by the stress state 

in the ring, which is dictated by the remapping algorithm adopted. Since both remapping methods (IVR 

and DK) provide identical stress states in the ring (see Figure 2), the obtained ring opening after 

springback is similar for both methods (approximately 4.3 mm). The ring gap measurements were 

performed along the straight line connecting the two ends of the split ring. Regarding the computational 

performance of each remapping procedure, the computational cost is about 300 seconds using the IVR 

method, while the DK method requires less than 2 seconds. The calculations were carried out on a 

computer equipped with an Intel Core i7–4770K Quad-Core processor (3.5 GHz). 

4.  Conclusions 

This study presents the application of the Dual Kriging (DK) interpolation method as remapping scheme, 

which is compared with the Incremental Volumetric Remapping (IVR) method, both in terms of 

accuracy and computational performance. The split-ring test is the example considered, which involves 

the cut of a ring from the sidewall of a cylindrical cup and consequent splitting operation, for springback 

evaluation. Both remapping methods provide results with a good level of accuracy, specifically the stress 

field, which presents a strong impact in the springback prediction. Thus, the predicted ring opening is 

identical in both remapping methods. On the other hand, the computational cost of the DK method is 

significantly lower (about 100 times) than the IVR method. 
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