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A B S T R A C T

The procedures for obtaining the stress vs. strain curve from the circular bulge test are investigated in detail
resorting to finite element analysis. Particular attention is given to in-plane anisotropic materials for which
remains a lack of knowledge about the distributions near the pole of the bulge specimen of variables such as the
surface radius of curvature, sheet thickness, principal stresses and strains as well as stress and strain paths. This
study seeks to understand and evaluate the errors inherent to the commonly used experimental procedure for
assessing the hardening curve from the bulge test. The procedure assumes that the stress path at the pole is
equibiaxial. An empirical equation relating the stress path with the strain path at the pole of the cap is suggested
to improve the determination of the biaxial stress vs. strain curve, which holds particular prominence in cases of
strongly anisotropic sheets.

1. Introduction

Sheet metal forming processes are demanded to manufacture
components for the automotive, aeronautics and other industries. The
finite element method (FEM) is commonly used nowadays for simulat-
ing and optimizing sheet metal forming processes. However, the
numerical simulation results are dependent on the convenient char-
acterization and modelling of the mechanical behaviour of metal sheets.
Whatever the constitutive model used in the simulations (i.e. hardening
law and anisotropic yield criterion), the strategies for identifying its
parameters as well as the experimental tests and procedures used in the
analysis play an important role in the characterization of the metal
sheets mechanical behaviour [1–8]. The parameters of the models are
generally determined with recourse to tensile and other experimental
tests, such as shear, cruciform and bulge [9].

The circular bulge test under hydraulic pressure allows achieving
relatively high strain values before necking and enables the definition
of the hardening law for a wide range of plastic deformation [10]. The
periphery of the metal sheet is immobilized through a drawbead, which
prevents the peripheral region of the sheet from moving into the radial
direction [11–13]. Then, a hydraulic pressure is applied on the inner
surface of the sheet, promoting an approximately spherical shape in the
region near the pole of the cap and inside a circle of constant latitude
[14,15]. Under these conditions, a biaxial stress path occurs at the pole
of the cap.

For evaluating the stress vs. strain curve, the evolutions of pressure,

radius of curvature and strain at the pole of the cap should be recorded
during the test. The measurements of radius of curvature and strain can
be performed by a spherometer and an extensometer, respectively
[16,17]. An optical system can replace these mechanical systems with
advantages, since it enables the description of the geometry and strain
distributions on the sheet surface during the bulge test [18,19]. In both
cases, the membrane theory that relates the stresses at the pole with the
pressure, radius of curvature and sheet thickness must be used [20].

The analysis of the bulge test results, including the application of
the membrane theory, still presents uncertainties, despite of the recent
recommended procedure by ISO 16808 (2014) [21]. In fact, the
accurate evaluation of the stress vs. strain curves depends on assump-
tions and simplifications, whose assessment are still under study. For
example, in a recent study Mulder et al. [22] examined the validity and
the conditions for using the membrane theory, which includes issues
related to the geometry of the cap that affects the evaluation of the radii
of curvature near the pole and the equibiaxial stress state assumption in
case of in-plane anisotropic materials. They showed that the spherical
function can be successfully replaced by the ellipsoid function, for
describing the bulge surface up to large distances from the pole of the
cap, in order to estimate the curvature radius. This allows increasing
the data to be considered without loss of accuracy, since it enables the
reduction of the scatter. In case of an in-plane anisotropic material,
Mulder et al. [22] concluded that the test conditions force the material
towards an equibiaxial strain state and the deviations of the average
stress from the equibiaxial stress are less than 3%, for an in-plane
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anisotropic material described by the Hill'48 criterion, with values of
the anisotropy coefficient, r, for angles of 0, 45 and 90°, such that
r0=0.5 and r45=r90=1.0 [23]. Yoshida [24] estimated the stress and
strain paths during the bulge test, in case of in-plane anisotropic
materials, using finite element analysis. He concludes that the stress
path at the pole of the cap deviates from equibiaxial between 1–5%,
depending on the degree of anisotropy of the materials. Also, he
observed that the deviation from unity of the ratio between the
curvature radii of the cap along the rolling and the transverse directions
is less than 0.4%, for equivalent plastic strains up to 0.6, and less than
2%, for equivalent plastic strains up to 1.0. However, these results only
concern materials with relatively low anisotropy in the sheet plane.

The current work presents a numerical study on the circular bulge
test of metal sheets, performed with the DD3IMP in-house finite element
code [25–27]. It examines the geometry and the stress and strain
distributions near the pole of the cap. This analysis also concerns the
relationship between stress and strain paths. Materials with anisotropy
in the sheet plane are particularly considered. The methodology for the
experimental determination of the stress vs. strain curve of metal sheets
and associated errors is also analysed. The Hill'48 criterion [28] and the
Swift law [29] are used due to their simplicity, but other constitutive
models are also tested.

2. Numerical modelling and analysis

In this section, the numerical model of the circular bulge test is
defined and the methodology for the evaluation of the biaxial stress vs.
strain curve is described.

2.1. Modelling

The geometry of the tools considered in the test is schematically
shown in Fig. 1, where RM=75 mm is the die radius, R1=13 mm is the
die profile radius, RD=95 mm is the radius of the central part of the
drawbead and RS=100 mm is the initial blank radius of the circular
sheet. This geometry was built based on the experimental bulge test
used by Santos et al. [30]. The tools were described using Bézier
surfaces, considering only one quarter of the geometry due to the
material and geometrical symmetry conditions. However, in order to
simplify the analysis, the drawbead geometry was neglected and its
effect was replaced by a boundary condition imposing radial displace-
ment restrictions on the nodes placed at a distance equal to RD from the
centre of the circular sheet [13]. The contact with friction was
described by the Coulomb law with a friction coefficient of 0.02 [31].
The numerical simulations were carried out with the DD3IMP in-house
code [25–27] assuming an incremental increase of the pressure applied
to the sheet inner surface. The blank sheet, 1 mm thick, was discretized
with linear 8-node solid elements, using two layers of elements through
the thickness. More details about the spatial discretization adopted are

given in [32,33].
The constitutive model adopted for the finite element analysis

assumes that: (i) the elastic behaviour is isotropic and described by
the generalised Hooke's law (with the value of the Young's modulus,
E=210 GPa, and the Poisson's ratio, ν=0.30, in all cases); (ii) the
plastic behaviour is described by the orthotropic Hill'48, Drucker+L or
CB2001 yield criteria and the hardening model by the Swift or the Voce
isotropic laws.

The Hill'48 yield surface is described by the equation [28]:
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where σxx, σyy, σzz, τxy, τxz and τyz are the components of the Cauchy
stress tensor, defined in the principal axes of orthotropy, and F, G, H, L,
M and N are the material parameters describing the anisotropy of the
metal sheet. Y represents the yield stress and its evolution during
deformation Y f ε= ( )p .

The Hill'48 yield criterion was chosen because of its simplicity, but
its lack of flexibility does not allow it to correctly describe some
anisotropic behaviours, including those designated by Banabic as ‘first
and second order anomalous’ behaviours [34]. In this context, the
Drucker+L and the CB2001 criteria were also chosen due to their
degree of flexibility.

The Drucker+L and the CB2001 yield criteria [35] are extensions of
the Drucker isotropic yield criterion [36]. The Drucker+L yield
criterion is described by the equation:
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where tr(s) is the trace of the stress tensor s, resulting from the linear
transformation of the Cauchy stress tensor, σ, and c is a weighting
isotropy parameter, ranging between −27/8 and 9/4, to ensure the
convexity of the yield surface. When c equals zero, this criterion
coincides with the Hill’48 yield criterion. The s stress tensor is given by:

s L σ= : , (3)

where L is the linear transformation operator proposed by Barlat et al.
[37]:
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in which Ci, with i=1, …, 6, are the anisotropy parameters;
C1=C2=C3=C4=C5=C6 for the full isotropy condition. This yield
criterion includes one more parameter, the parameter c, when com-
pared to Hill’48 yield criterion, thus being more flexible. So, when the
parameter c is not zero, Hill'48 criterion cannot fully describe the
behaviour of a material that follows the Drucker+L criterion.

The CB2001 yield criterion is given by the equation:
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where J02 and J03 are the second and third generalised invariants of the
Cauchy stress tensor:

Fig. 1. Bulge test, with the identification of the principal dimensions of the tool according
to Santos et al. [30].

L.C. Reis et al. International Journal of Mechanical Sciences 128–129 (2017) 70–93

71



J a σ σ a σ σ a σ σ

a τ a τ a τ

J b b σ b b σ

b b b b σ

b σ b σ σ b σ b σ σ

b b b σ b b b σ σ

b b σ σ σ

τ
b σ b σ b b σ

τ
b σ b σ b b σ

τ
b b σ b σ b σ b τ τ τ

=
6

( − ) +
6

( − ) +
6

( − )

+ + +

= 1
27

( + ) + 1
27

( + )

+ 1
27

[2( + ) − − ]

− 1
9

( + ) − 1
9

( + )

− 1
9

[( − + ) + ( − + ) ]

+ 2
9

( + )

−
3

[2 − − (2 − ) ]

−
3

[2 − − (2 − ) ]

−
3

[( + ) − − ] + 2 ,

2
0 1

xx yy
2 2

yy zz
2 3

xx zz
2

4 xy
2

5 xz
2

6 yz
2

3
0

1 2 xx
3

3 4 yy
3

1 4 2 3 zz
3

1 yy 2 zz xx
2

3 zz 4 xx yy
2

1 2 4 xx 1 3 4 yy zz
2

1 4 xx yy zz

xz
2

9 yy 8 zz 9 8 xx

xy
2

10 zz 5 yy 10 5 xx

yz
2

6 7 xx 6 yy 7 zz 11 xy yz xz (6)

where a1, …, a6 and b1, …, b11 are the anisotropy parameters; the full
isotropy condition is attained when the values of ak and bk parameters
are equal and −3.375≤c≤2.25.

The Swift isotropic hardening law [29] is defined by the equation:

Y K ε ε= ( + ) ,n
0

p (7)

where ε p is the equivalent plastic strain and K, ε0 and n are the material
parameters. The initial yield stress, Y0, can be written as a function of K,
ε0 and n, as follows: Y Kε= n

0 0 . The Voce law [38] can be written as:

Y Y R C ε= − exp(− ),Ysat sat
p (8)

where Ysat, Rsat and CY are materials parameters; the yield stress is
Y0=Ysat-Rsat.

The Swift law enables the description of an increasing hardening
while the Voce law takes into account the occurrence of flow stress
saturation; both are behaviours often observed in some metals and
alloys.

2.2. Analyses

The analysis of the stress state near the pole of the metal sheet
during the bulge test, when using circular dies, can be performed with
the aid of the membrane theory [39], as long as a small ratio between
the sheet thickness and the die diameter is fulfilled. The typical values
suggested for this ratio are lower than 1/50 [9,40]. Standard ISO
16808:2014 [21] recommends this ratio to be equal to or lower than 1/
33. Under these conditions the bending stress can be neglected, and
assuming that the thickness stress σ3 (=σZ) is equal to zero, a relation-
ship between the principal stresses at the pole, the pressure and the
geometry of the cap is given by:
σ
ρ

σ
ρ

p
t

+ = ,1

1

2

2 (9)

where σ1 and σ2 are the principal stresses in the sheet surface (assuming
that the principal stress axes, O123, and the orthotropy axes, Oxyz,
coincide), ρ1 and ρ2 are the radii of curvature, at half thickness, in the
Oxz and Oyz planes, respectively, p is the hydraulic pressure and t is the
sheet thickness.

Finally, in cases of circular die and isotropic or anisotropic materials
such that, the anisotropy coefficients at 0 and 90° are equal (r0=r90),
the principal stresses in the sheet plane are also equal (σ1=σ2=σ), as
well as the radii of curvature (ρ1=ρ2=ρ), which simplifies Eq. (9) as
follows:

σ pρ
t

=
2

.
(10)

And so, this equation is sufficient to determine the principal stresses in

the sheet plane (σ1=σ2=σ), without requiring any additional equation.
This assumption is adopted in the ISO 16808:2014 [21] standard to
enable the definition of the biaxial stress.

In order to experimentally determine the biaxial stress vs. strain
curve, the evolution of the variables in Eqs. (9) or (10) needs to be
assessed during the test. The sheet thickness at the pole of the cap, t, is
determined based on the knowledge of the initial thickness of the sheet,
t0, and the thickness strain, ε3, through the following equation:

t t ε= exp(− ),0 3 (11)

where the principal strain, ε3, is obtained from the principal strains in
the sheet plane, ε1 and ε2, at the pole of the cap, based on the condition
of volume constancy during the plastic deformation:

ε ε ε= −( + ).3 1 2 (12)

Given that the radius of curvature is experimentally evaluated on
the external surface of the cap, its correction is performed based on the
following equation [41]:

ρ ρ t= −
2

,ext (13)

where ρ is the radius of curvature at the half thickness of the cap, and
ρext is the radius of curvature of the external surface of the cap.

Since the total strain presents two additive components, elastic and
plastic, the elastic strain components, εe

1 and ε e
2 , can be removed from

the measured strains, ε1 and ε2. Assuming isotropic elastic behaviour,
the generalised Hooke's law, gives the elastic strain components as
(σ3=0):
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In order to determine the biaxial stress vs. strain curves, the analysis
of the numerical simulation results was performed at various stages
during the test, using step-wise measurements, as in typical experi-
mental analysis. The evaluation of the surface radius of curvature, ρext,
at the pole of the cap is performed using NXT Defect Evaluator code
[42]. This software allows the evaluation of surface curvature based on
the coordinates of points located on the same meridian plane. The
surface radius of curvature, ρext, was analysed for both Oxz and Oyz
planes. The radius of curvature at half thickness, ρ, is determined using
Eq. (13). At each stage, the principal strains in the sheet plane were
determined by the direct measurement at the pole of the cap, which is
comparable to the experimental procedure using the digital image
correlation technique (DIC).

3. Geometry of the cap, stress and strain distribution and their
paths

The study in this section focuses on materials whose behaviour is
described by the Hill'48 criterion and the isotropic Swift hardening law.
The analysis of the distributions, near the pole of the cap of the bulge
test, of variables such as the surface radius of curvature, the sheet
thickness, the principal and equivalent stresses and strains as well as the
stress and strain paths is performed. The analysis mainly focuses on in-
plane anisotropic materials with r0≠r90, for which there remains a lack
of knowledge about these aspects. In fact, in case of in-plane isotropic
materials, most of these issues have already been analysed (see for
example [22]), in view of their relative simplicity related to the
geometrical and material symmetry. Also, the materials of the current
study with r0=r90≠r45 show identical behaviour along the Ox and Oy
axes, as expected due to the symmetry of the yield surface in the (σxx;
σyy) plane and the geometrical symmetry of the circular bulge test. That
is why the analysis in this section deals primarily with materials such
that r0≠r90.
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3.1. Sheet materials

Table 1 shows the parameters of the Hill'48 criterion of the
materials under study and the respective designation. The condition
G+H=1 was used for the parameters of the Hill’48 criterion, i.e. it is
assumed that the hardening curve Y ε( )p corresponds to the stress vs.
plastic strain curve under uniaxial tensile test along the Ox axis [43].
The designation A_B_C corresponds to a material with anisotropy
coefficients rα in the sheet plane, such that: r0=A, r45=B and r90=C
(α is the angle between the tensile direction and the rolling direction,
RD parallel to Ox). The selected materials for this study display three
different types of behaviour in the sheet plane: (i) isotropy:
r0=r45=r90; (ii) anisotropy with: r0=r90≠r45; (iii) anisotropy with:
r0≠r90. Fig. 2 shows the evolution of the anisotropy coefficient, rα, in
the sheet plane for the materials with in-plane anisotropy.

Figs. 3 and 4 show the normalized initial yield surfaces in the plane
σ σ σ σ( / ; / )xx yy

0
0

0
0 , of the materials with r0=r90=r45 and r0=r90≠r45

(Fig. 3), and with r0≠r90 (Fig. 4). In both figures, the dashed-dotted
grey straight lines correspond to the condition σyy=σxx; the remaining
straight lines in Fig. 4 indicate the major axes of the ellipses. The yield
surfaces in the plane σ σ σ σ( / ; / )xx

0
0 yy

0
0 are coincident in case of the

materials: 3_3_3, 3_1.5_3 and 3_0.6_3 (see Fig. 3); 1.5_2.25_3 and 1.5_3_3
(see Fig. 4). The yield surfaces of the materials 0.5_2.25_4 and
0.6_1.8_3, for which r0< 1 and r90> 1, have their major axes with
higher slope than those of the remaining materials; moreover, the axes
of the yield surfaces for materials 0.6_0.7_0.8 and 1.5_2.75_4 are

collinear (Fig. 4). In summary, the choice of materials is focused on:
(i) in-plane isotropic materials, with different anisotropy coefficients
and, consequently, several shapes of the yield surface near the
equibiaxial region (different ratios between the major and minor axes
of the ellipse) and (ii) in-plane anisotropic materials with different
ratios between the major and minor axes of the ellipse as well as
different orientations of these axes.

The parameters of the Swift hardening law, for the materials studied
in the next sections, are shown in Table 2. Simulations were performed
for all the materials in Table 1 with the work hardening coefficient, n,
equal to 0.20 (Table 2). The hardening laws with work hardening
coefficients, n, equal to 0.10 and 0.35 were only used for simulations of

Table 1
Designation of the materials and the respective parameters of the Hill'48 criterion.

Designation Parameters of the Hill'48 Criterion

F G H L=M N

Materials with r0=r45=r90
0.7_0.7_0.7 0.588 0.588 0.412 1.500 1.412
1_1_1 0.500 0.500 0.500 1.500 1.500
2_2_2 0.333 0.333 0.667 1.500 1.667
3_3_3 0.250 0.250 0.750 1.500 1.750
Materials with r0=r90≠r45
0.6_3_0.6 0.625 0.625 0.375 1.500 4.375
3_0.6_3 0.250 0.250 0.750 1.500 0.550
1.5_3_1.5 0.400 0.400 0.600 1.500 2.800
3_1.5_3 0.250 0.250 0.750 1.500 1.000
Materials with r0≠r90
0.6_0.7_0.8 0.469 0.625 0.375 1.500 1.313
0.6_1.8_3 0.125 0.625 0.375 1.500 1.725
1.5_2.25_3 0.200 0.400 0.600 1.500 1.650
1.5_2.75_4 0.150 0.400 0.600 1.500 1.788
0.5_2.25_4 0.083 0.667 0.333 1.500 2.063
1.5_3_3 0.200 0.400 0.600 1.500 2.100
1_2.25_3.5 0.143 0.500 0.500 1.500 1.768

Fig. 2. Distribution of rα in the sheet plane, for materials with in-plane anisotropy: (a) r0=r90≠r45; (b) r0≠r90.

Fig. 3. Normalized initial yield surfaces in the plane σ σ σ σ( / ; / )xx 00 yy 00 of the materials

with r0=r90=r45 and r0=r90≠r45.

Fig. 4. Normalized initial yield surfaces in the plane σ σ σ σ( / ; / )xx 00 yy 00 of the materials

with r0≠r90.
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the materials 0.6_0.7_0.8, 1.5_2.75_4 and 0.5_2.25_4 (Table 1).
The materials with strong anisotropy in the sheet plane, 1.5_2.75_4

and 0.5_2.25_4, and with hardening coefficient, n=0.20, were chosen
to illustrate the general behaviour, that is not only at the pole of the
cap, but also at distant points. Fig. 5 shows the evolution of pressure
with the pole height for these materials and the instants of the bulge
test under analysis. These correspond to four pressure values during the
tests, marked in the figure with dots, which corresponds to: (i) material
1.5_2.75_4 with pressure values of 4.5, 8.5, 9.5 and 10 MPa (corre-
sponding to the Hill'48 equivalent strains equal to 0.066, 0.231, 0.329
and 0.421 at the pole of the cap, respectively); and (ii) material
0.5_2.25_4 with pressure values of 4, 8, 9 and 9.4 MPa (corresponding
to the Hill’48 equivalent strains equal to 0.059, 0.229, 0.336 and 0.421
at the pole of the cap, respectively).

3.2. Contour of the cap and thickness distribution

Fig. 6 shows the contours of the cap, i.e. the vertical position of each
point, z, as a function of the distance from the centre, d, along the Ox

and Oy axes, for the materials 1.5_2.75_4 (Fig. 6(a)) and 0.5_2.25_4
(Fig. 6(b)) and the pressure values previously mentioned (see Fig. 5).
Whatever the pressure value, the Ox and Oy profiles coincide, from the
centre to the edge of the cap (Fig. 6). This means that the radii of
curvature at the pole of the cap does not depend on the measuring axis,
Ox or Oy, which was also confirmed by the evaluation of both radii of
curvature.

Fig. 7 shows the evolution of the thickness as a function of the
distance to the centre, d, along the Ox and Oy axes, for the materials
1.5_2.75_4 (Fig. 7(a)) and 0.5_2.25_4 (Fig. 7(b)), at the pressure values
previously mentioned (see Fig. 5). As for the profiles, the thickness
distributions are almost coincident for the axes Ox and Oy at the two
first steps analysed, but some differences are noticeable for the two
higher pressure values, mainly in case of the material 0.5_2.25_4. These
differences in thicknesses occurs in this material for distances from the
centre higher than about 20 mm, at the pressure equal to 9 MPa, and
higher than at about 15 mm, at the pressure equal to 9.4 MPa.

In summary, the analysis of the surface shape of the deformed sheet
showed that, regardless of the anisotropic material behaviour, the
geometry of the cap has symmetry such that the radii of curvature at the
pole of the cap are equal along the axes Ox and Oy (ρ1=ρ2=ρ), at each
moment of the test, the same occurring for the sheet thickness. On the
contrary, the principal stress and strain distributions are different along
these axes, i.e. the stress and strain paths at the pole of the cap are
always different from 1 (σ1≠σ2 and ε1≠ε2), as it will be seen in the next
sections.

3.3. Stress and strain distributions

Figs. 8 and 9 show the distributions of the principal strains and
stresses, parallel to the Ox and Oy directions, for the materials and
pressure values as in Figs. 6 and 7 (see also Fig. 5). For a region around
the pole of the cap, whose size decreases as the test progresses, the
strain and stress components parallel (normal) to the Ox axis, at a given
point on this axis, are equal to the corresponding normal (parallel)
components to the Oy axis, for a point on this axis at the same distance
from the centre of the cap. At a given pole height, the size of this region
is smaller the greater the planar anisotropy of the material, as it can be
concluded by comparing the results of materials 1.5_2.75_4 (Fig. 8) and
0.5_2.25_4 (Fig. 9).

Figs. 10 and 11 show the distributions of the Hill'48 equivalent
strains and stresses, along the Ox and Oy directions, for the same
materials and pressure values as in Figs. 6–9 (see also Fig. 5). Following
the trends in Figs. 8 and 9, the equivalent strains and stresses are equal
along both orthotropic axes, in a region around the pole. This region
becomes smaller with the increase of the pole height but, even near the
end of the test, its size is about 10 mm, for the material 0.5_2.25_4, and

Table 2
Parameters of the Swift hardening law.

Materials Parameters of the Swift law

Y0 [MPa] K [MPa] ε0 n

200_0.10 200 339.73 0.005 0.10
200_0.20 200 577.08 0.005 0.20
200_0.35 200 1277.59 0.005 0.35

Fig. 5. Evolution of the pressure, p, with the pole height, h, for materials 1.5_2.75_4 and
0.5_2.25_4. The dots concern the pressure values on which the analysis is focused: 4.5,
8.5, 9.5 and 10 MPa, for the material 1.5_2.75_4, and 4, 8, 9 and 9.4 MPa, for the material
0.5_2.25_4. The hardening coefficient of both materials is n=0.20.

Fig. 6. Contours of the cap at the four pressure values indicated in Fig. 5, i.e. vertical position, z, as a function of the distance to the centre of the cap, d, along the Ox and Oy axes, for the
materials: (a) 1.5_2.75_4; (b) 0.5_2.25_4. The hardening coefficient of both materials is n=0.20.
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higher for the material 1.5_2.75_4, in case of equivalent strain, and
covers almost the entire diameter of the die, for both materials in the
case of equivalent stress.

3.4. Stress and strain path evolutions at the pole

Based on results such as in Figs. 8 and 9, Fig. 12 present the stress
(Fig. 12(a)) and strain (Fig. 12(b)) paths observed at the pole of the cap,
for in-plane anisotropic materials with hardening coefficient, n=0.20,
showing that the stress paths are nearly unchanged during the bulge
test, although with minor variations. However, noticeable decreasing of
the strain path occurs during the test, in most cases. In fact, a small
variation in the stress path can give rise to a relatively larger amplitude
of variation of the strain path, which is represented by the normal to the
yield surface. The amplitude of variation of the strain path during each
test is always inferior to 5%, whatever the material (the maximum
difference occurs for the material 0.5_2.25_4).

The stress and strain paths are also influenced by the value of the
hardening coefficient of the material. Fig. 13 allows comparing the
materials 0.6_0.7_0.8, 1.5_2.75_4 and 0.5_2.25_4, with n=0.10, 0.20
and 0.35 concerning the stress and strain paths (Fig. 13(a) and (b),
respectively). The stress paths are almost unchanged during the test,
and nearly close to each other for a given value of the hardening
coefficient. Nevertheless, the small variations that occur in the stress
path are enough to cause relatively large variations in the strain path
(in agreement with the associated flow rule), which decreases during
the test, i.e. deviates from the equibiaxial (except for the material
0.5_2.25_4, with n=0.10), as for results in Fig. 12. It can be observed

that in general the strain path is lower for higher values of the
hardening coefficient.

3.5. Final remarks

As partial conclusions, it can be stated that, as for the materials with
r0=r90, also for the materials with r0≠r90 the geometry of the cap is
similar along both orthotropic axes in the sheet plane, with respect to
the profile and the thickness of the sheet, which is imposed by the
geometrical constrains of the bulge test with circular die. The results
show that this type of symmetry can be achieved even though the stress
and strain paths in the pole region are away from the biaxial symmetry.
The inability to impose equibiaxial stress and strain paths simulta-
neously, in case of materials with r0≠r90, arises from the normality
condition, i.e. the associated flow rule with the yield surface as plastic
potential, which in case of the Hill'48 criterion leads to the following
equation (under the assumptions of coincidence of the coordinate
systems of principal stress, O123, and orthotropy, Oxyz, and that
σ3=σz=0):

dε
dε

H F H

G H H
=

− + ( + )

( + ) −
.

σ
σ

σ
σ

2

1

2
1

2
1 (15)

This equation can also be written as a function of the anisotropy
coefficients, r0 and r90:

Fig. 7. Evolution of the sheet thickness, t, with the distance from the centre of the cap, d, along the Ox and Oy axes, at the four pressure values indicated in Fig. 5, for the materials: (a)
1.5_2.75_4; (b) 0.5_2.25_4. The hardening coefficient of both material is n=0.20.

Fig. 8. Evolution of the (a) principal strains and (b) principal stresses, with the distance from the centre of the cap, d, along the axes Ox and Oy of the sheet, for the material 1.5_2.75_4 at
the four pressure values indicated in Fig. 5. The hardening coefficient of the material is n=0.20. The designation in figures can be read as for the example(s): Ox_e1_10 (Oy_s2_4.5), in
which Ox (Oy) indicates the axis for measuring the distance d; e1 (s2) is the strain (stress) value parallel to the Ox (Oy) axis; and 10 (4.5) is the pressure value [MPa].
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This equation shows that, for materials with r0< r90 as those
studied in this work, when the stress path is equal to 1, the strain path
is lower than 1, and when the strain path is equal to 1, the stress path is
higher than 1 (the opposite occurs when r0> r90). In fact, the observed
stress and strain paths are between these two cases, as schematized in
Fig. 14. The way this behaviour influences the evaluation of the biaxial
stress-strain curve will be analysed in the next section.

4. Biaxial stress-strain curve

The determination of the biaxial stress vs. strain curve, of materials
whose behaviour is described by the Hill'48 yield criterion, is tested
under conditions similar to those experimentally performed. The stress
at the pole of the cap is determined using the simplified equation of the
membrane theory (Eq. (10)), as recommended by ISO 16808:2014 [21].
This standard also recommends the measuring of both principal strains
in the sheet plane, which requires the use of optical measurement
systems; but when using tactile systems only one principal strain value
is measured. Both cases are tested in this section, using the strains
numerically measured, at the pole of the cap.

4.1. Introduction

The assumption of isotropy for determining the equivalent stress
(i.e. the use of Eq. (10) for the stress evaluation), can be interpreted as
the finding of the value of equivalent stress generating a von Mises yield
surface that intercepts (or is tangent to) the yield surface of the
anisotropic material, at the point corresponding to the stress path
followed during the bulge test of the anisotropic material. Examples are
shown in the Fig. 15, for the Hill'48 materials with in-plane isotropy,
3_3_3 (Fig. 15(a)) and anisotropy 0.5_2.25_4 (Fig. 15(b)). In Fig. 15(b),
the marked stress path is the average of those observed during the bulge
test (see in Fig. 12(a) the case of material 0.5_2.25_4).

The Hill'48 and the von Mises equivalent stresses can be written as
follows (in case of the Hill'48, assuming the coincidence of the
coordinate systems of principal stress, O123, and orthotropy, Oxyz):

σ G H σ F H σ Hσ σ= ( + ) + ( + ) − 2 ,1
2

2
2

1 2 (17)

σ σ σ σ σ= + − ,1
2

2
2

1 2 (18)

The Hill'48 material parameters in Table 1 follow the condition
G+H=1, which means that the hardening laws (Table 2) are only
comparable with the stress vs. strain curves in tension along the Ox axis.
The constitutive parameters in Tables 1 and 2 can be recalculated, i.e.
converted into equivalent sets of constitutive parameters [41], so that
the Hill'48 equivalent stress, σHill′48 ( σ= in Eq. (17)), becomes equal to
the von Mises stress, σvM ( σ= in Eq. (18)), as shown in Tables 3 and 4.
This makes the hardening laws associated with the Hill'48 criterion
comparable to the biaxial stress vs. strain curves of the bulge test

Fig. 9. Evolution of the (a) principal strains and (b) principal stresses, with the distance to the centre of the cap, d, for the material 0.5_2.25_4 at the four pressure values indicated in
Fig. 5. The hardening coefficient of the material is n=0.20. The designations are as indicated in Fig. 8.

Fig. 10. Evolution of the (a) equivalent strain and (b) equivalent stress with the distance to the centre of the cap, d, along the Ox and Oy axes, for the material 1.5_2.75_4 at the four
pressure values indicated in Fig. 5. The hardening coefficient of the material is n=0.20.
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determined, without taking into account the material anisotropy. The
determination of σ σ k/ =vM Hill′48 , with:

k σ σ σ σ
G H F H σ σ H σ σ

= 1 + ( / ) − ( / )
( + ) + ( + )( / ) − 2 ( / )

,2 1
2

2 1

2 1
2

2 1 (19)

requires the knowledge of the stress path. In case of in-plane isotropic
materials and materials with r0=r90≠r45, this does not involve any
difficulty, given that σ2/σ1 is always equal to 1, at the pole of the cap. In
case of materials with r0≠r90, the stress path at the pole is different
from 1 (σ2≠σ1), usually unknown from the experimental point of view
and depends on the material anisotropy and work hardening coeffi-
cient. For each of these materials, the average value of the stress path
along the test, obtained from Figs. 12(a) and 13(a), was used for
determining the constitutive parameters in Tables 3 and 4.

The relationships that allow the equivalence between the sets of
parameters were previously discussed in [43] and, in the current case,
are based on the factor k so that Eqs. (17) and (18) lead to the same
value of equivalent stress. Therefore, the knowledge of the k factor
allows defining the new parameters for the Swift law as:

n n K K k ε ε k Y Y k* = ; * = ( ) ; * = / ; * = .n+1
0 0 0 0 (20)

It should be mentioned that when using these new parameters for
the Swift law, the mechanical behaviour of the materials presented in
Tables 1 and 2 remains unchanged, if the parameters of the Hill’48 yield
criterion are modified as follows [43]:

F kF G kG H kH L kL M kM N kN* = ; * = ; * = ; * = ; * = ; * = . (21)

The parameters without asterisk are those in Tables 1 and 2 and

with asterisk are shown in Tables 3 and 4 (for convenience of the
presentation, the asterisks are not indicated in Tables 3 and 4). Table 3
shows the hardening law and the Hill'48 criterion equivalent para-
meters of all materials in Table 1 and hardening coefficient n=0.20
(Table 2), and Table 4 the equivalent parameters of the three materials
in Table 1 with r0≠r90 and hardening coefficients 0.10 and 0.35
(Table 2). In both tables the respective stress paths and k values are
also shown.

In Tables 3 and 4, the condition F+G=1 is observed for the
materials with r0=r90, which means that the hardening curves are
comparable to the equibiaxial stress vs. strain curves. For materials with
r0≠r90 the sum (F+G) can deviate significantly from one, depending on
the stress path observed during the bulge test, and the hardening curves
are comparable to the biaxial stress vs. strain curves determined for the
observed stress path.

In the next sections, the issues related with the errors associated
with the assumption of isotropy and equibiaxial stress at the pole of the
cap, under the context of the membrane theory (Eq. (10)), are analysed.

4.2. Materials with r0=r90

In case of in-plane isotropic materials and materials with
r0=r90≠r45 (Table 3), the strain and stress paths at the pole of the
cap are known a priori, and equal to 1. An equivalence is easily obtained
between the Hill’48 and the von Mises criteria, for determining the
equivalent stress: Eqs. (17) and (18) give the same result for all these
materials (σ=σ1=σ2, for both criteria). Consequently, the simplified
equation of the membrane theory (Eq. (10)) allows to determine the

Fig. 11. Evolution of (a) equivalent strain and (b) equivalent stress with the distance to the centre of the cap, d, along the Ox and Oy axes, for the material 0.5_2.25_4 at the four pressure
values indicated in Fig. 5. The hardening coefficient of the material is n=0.20.

Fig. 12. Evolution of the: (a) stress paths and (b) strain paths, at the pole of the cap, during the test. These evolutions concern the materials with hardening coefficient equal to 0.20.
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stress σ=σ1=σ2, as recommended by ISO 16808:2014 [21].
Moreover, the equivalent plastic strain values are equal for both

criteria, for the equibiaxial strain path. In fact, the equivalent plastic

strains are given by the following equations for the Hill’48 and von
Mises criteria (in case of the Hill'48, assuming the coincidence of the
coordinate systems of principal stress, O123, and orthotropy, Oxyz),
respectively:

ε
F H ε G H ε Hε ε

FG GH HF
= ( + ) + ( + ) + 2

+ +
,1

2
2
2

1 2

(22)

⎛
⎝⎜

⎞
⎠⎟ε ε ε ε ε= 2

3
+ + .1

2
2
2

1 2
(23)

In case of von Mises criterion, Eq. (23) assumes the simplified
formulation for the equibiaxial strain path (ε1 = ε2 = ε):

ε ε= 2 . (24)

When ε1=ε2, Eqs. (22) and (24) give the same result for the
equivalent plastic strain of these materials: ε =2ε. This is illustrated
in Fig. 16 for the case of the material 3_3_3, which represents in the (ε1;
ε2) plane the curves with equal equivalent plastic strain (ε = 1), for the
Hill’48 and von Mises criteria, showing that the curves are tangent for
the equibiaxial strain path (ε1=ε2).

In summary, the biaxial stress vs. plastic strain and the hardening
law curves must match, whatever the yield criteria used, Hill’48 or von
Mises, for materials with r0=r90. That is, the use of the von Mises
criterion for determining the biaxial stress vs. strain curve is fully
justified for materials with r0=r90. From the experimental point of

Fig. 13. Evolution of the: (a) stress paths and (b) strain paths, at the pole of the cap, during the test. These evolutions concern the materials 0.6_0.7_0.8, 1.5_2.75_4 and 0.5_2.25_4, with
hardening coefficients equal to 0.10, 0.20 and 0.35.

Fig. 14. Illustrative example, corresponding to the material 0.5_2.25_4 with n=0.20,
showing the yield surface and the average of the observed values (see Fig. 12) of the stress
and strain paths (solid lines), the stress and strain paths corresponding to equibiaxial
stress path (dashed lines) and equibiaxial strain path (dotted lines).

Fig. 15. Initial yield surfaces and the observed stress paths (black solid line) of the materials: (a) 3_3_3; (b) 0.5_2.25_4. The isotropic materials with equal equivalent stress are also
indicated in each figure (vM). The bulge stress path at the pole (black solid lines) is equibiaxial, in case of (a), and is σ2/σ1=1.678, in case of (b). The black dashed and the grey solid lines
in (b) represent the axis of the Hill'48 and the von Mises ellipses, respectively. The hardening coefficient of the materials is n=0.20.
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view, mechanical or optical devices can be used for measuring the
principal strain values in the sheet plane, which are equal for both axes
(Ox and Oy).

Fig. 17 plots the hardening curves in Table 3 with r0=r90 and the
points obtained using the membrane theory (Eq. (10)) under isotropy
conditions, as recommended by ISO 16808:2014 [21]. The respective
error in equivalent stress is shown in Fig. 18. This error is defined as:

σ σ σError = ( − )/HL MT HL (where σHL and σMT are the equivalent stresses
given by the hardening law (HL) and the estimated from the membrane
theory (MT), respectively). The observed errors arise from the determi-
nation of the radius of curvature and are also associated to the use of
the membrane theory approach under bulge test conditions.

4.3. In-plane anisotropic materials with r0≠r90

The materials with planar anisotropy such that r0≠r90 (Tables 3 and
4) are now analysed. In these cases, the stress and strain paths are
different from 1 (see Figs. 12 and 13 and Table 3) and the simplified
equation of the membrane theory (Eq. (10)) does not allow calculating
the stresses σ1 and σ2, separately. Alternatively, the use of Eq. (9)
requires the knowledge of the stress path, in order to obtain the stresses
σ1 and σ2. Besides, Eq. (9) assumes a linear relationship between σ2 and
σ1 with slope equal to −1, at each moment of deformation (p and t
fixed), assuming that ρ1=ρ2=ρ (see Section 3.2), and its interception
with the equibiaxial stress line corresponds to the stress determined by
using the simplified equation of the membrane theory (Eq. (10)). This is
exemplified in Fig. 19 for the initial yield surface of the Hill’48
anisotropic material 0.5_2.25_4, which is crossed by the von Mises

surface at the point corresponding to the observed stress path. The
figure also shows the von Mises surface corresponding to an equivalent
stress equal to the determined using the simplified equation of the
membrane theory (Eq. (10)), i.e. when considering σ=σ (=σ1=σ2). The
equivalent stresses corresponding to both von Mises surfaces can be
significantly different, depending on the anisotropy of the material.

Moreover, the results show that the equivalent strains obtained

Table 3
Constitutive parameters equivalent to those in Table 1 for the material 200_0.20 in Table 2. The average stress paths observed during the bulge test and the k value are also indicated.

Designation Parameters of the Swift law Parameters of the Hill'48 criterion

Y0 K n F G H L=M N σ2/σ1 k
[MPa] [MPa]

Materials with r0=r45=r90
0.7_0.7_0.7 184.43 523.59 0.20 0.500 0.500 0.350 1.201 1.200 1.000 0.850
1_1_1 200.00 577.08 0.20 0.500 0.500 0.500 1.500 1.500 1.000 1.000
2_2_2 245.07 736.46 0.20 0.500 0.500 1.002 2.252 2.503 1.000 1.502
3_3_3 282.84 874.69 0.20 0.500 0.500 1.500 3.000 3.500 1.000 2.000
Materials with r0=r90≠r45
0.6_3_0.6 178.89 504.77 0.20 0.500 0.500 0.300 1.200 3.500 1.000 0.800
3_0.6_3 282.84 874.69 0.20 0.500 0.500 1.500 3.000 1.100 1.000 2.000
1.5_3_1.5 223.84 659.75 0.20 0.500 0.500 0.750 1.875 3.500 1.000 1.250
3_1.5_3 282.84 874.69 0.20 0.500 0.500 1.500 3.000 2.000 1.000 2.000
Materials with r0≠r90
0.6_0.7_0.8 192.87 552.47 0.20 0.436 0.581 0.349 1.395 1.221 1.114 0.930
0.6_1.8_3 264.83 808.29 0.20 0.219 1.096 0.658 2.630 3.025 1.505 1.753
1.5_2.25_3 262.57 800.02 0.20 0.345 0.689 1.034 2.585 2.844 1.131 1.724
1.5_2.75_4 277.55 855.08 0.20 0.289 0.770 1.156 2.889 3.443 1.171 1.926
0.5_2.25_4 284.86 882.17 0.20 0.168 1.353 0.676 3.043 4.185 1.678 2.029
1.5_3_3 262.55 799.93 0.20 0.345 0.689 1.034 2.585 3.619 1.130 1.723
1_2.25_3.5 265.04 809.06 0.20 0.251 0.878 0.878 2.634 3.105 1.280 1.756

Table 4
Constitutive parameters equivalent to those in Table 1 for the materials 200_0.10 and 200_0.35 in Table 2. The average stress paths observed during the bulge test and the k value are also
indicated. Only three cases of anisotropy are considered: 0.6_0.7_0.8, 1.5_2.75 and 0.5_2.25_4.

Material Parameters of the Swift law Parameters of the Hill'48 criterion

Y0 K n F G H L=M N σ2/σ1 k
[MPa] [MPa]

0.6_0.7_0.8 192.91 326.51 0.10 0.436 0.581 0.349 1.396 1.222 1.117 0.930
192.78 1215.69 0.35 0.436 0.581 0.348 1.394 1.220 1.108 0.929

1.5_2.75_4 277.61 487.28 0.10 0.289 0.771 1.156 2.890 3.345 1.173 1.927
277.55 1988.43 0.35 0.289 0.770 1.156 2.889 3.443 1.171 1.926

0.5_2.25_4 286.80 505.05 0.10 0.171 1.372 0.685 3.084 4.242 1.712 2.056
284.97 2060.57 0.35 0.169 1.354 0.676 3.045 4.188 1.680 2.030

Fig. 16. Curves of equivalent plastic strain equal to 1, for the Hill'48 material 3_3_3 and
for the equivalent isotropic von Mises material (see Fig. 15(a)). The dashed-dotted line
represents the equibiaxial strain path.
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using the Hill'48 or the von Mises yield criterion (Eqs. (22) and (23),
respectively) are different for materials with r0≠r90. This is illustrated
in Fig. 20 for the case of the material 0.5_2.25_4, which shows, in the
(ε1; ε2) plane, the curves with equal value of equivalent strain (ε = 1),
for the Hill’48 and the equivalent von Mises criteria. The curves with

Fig. 17. Comparison between the hardening curves in Table 3 (lines) and the results obtained with the membrane theory (symbols), whatever the criterion used for determining the
equivalent stress and strain (von Mises or Hill'48) for: (a) in-plane isotropic materials (r0=r45=r90); (b) materials with r0=r90≠r45. The hardening coefficient of the materials is n=0.20
(Table 3).

Fig. 18. Evolution of the error in stress for the cases of Fig. 17 for: (a) in-plane isotropic materials (r0=r45=r90); (b) materials with r0=r90≠r45. The hardening coefficient of the materials
is n=0.20 (Table 3).

Fig. 19. Initial yield surfaces of the material 0.5_2.25_4 with n=0.20 (black solid line)
and two isotropic materials with equivalent stress equal: (i) to that of the anisotropic
Hill’48 material (dashed line) and (ii) to the stress determined using the simplified
equation of the membrane theory (Eq. (10) – dashed-dotted line). The biaxial stress path
observed during the bulge test (black solid line) and the equibiaxial stress path (grey solid
line) are also indicated. The line with negative slope corresponds to the equation
(σ2+σ1=constant, i.e. Eq. (9)).

Fig. 20. Curves of equivalent strain equal to 1, for the material 0.5_2.25_4 (black solid
line) and the equivalent isotropic material (grey solid line). The observed strain path
(solid straight line) is also indicated as well as the equibiaxial strain path (dashed-dotted
straight line).
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equal equivalent strain intersect each other at a point other than that
corresponding to the observed strain path.

In order to assess the error in the determination of the equivalent
strain under the assumption of equibiaxial strain path and von Mises

criterion (Eq. (23)), when compared with the value determined by the
Hill'48 definition (Eq. (22)), Fig. 21 shows the ratio between the von
Mises and the Hill'48 equivalent strains as a function of the strain and
stress paths (Fig. 21(a) and (b), respectively), observed for all materials

Fig. 21. Ratio between the equivalent strains determined by von Mises and Hill'48 for the materials with r0≠r90 and n=0.20 (see Table 3), as a function of: (a) the strain path; (b) the
stress path. The dashed lines highlight the trend of the evolutions.

Fig. 22. (a) Comparison between the hardening laws in Table 3 (lines) and the results obtained by the membrane theory (symbols) with σ1=σ2=σ=σ (Eq. (18)). The equivalent strain
determination uses the value of ε in Eq. (24) equal to the measured value of ε1; (b) evolution of the error in equivalent stress with the equivalent strain. The hardening coefficient of the
materials is n=0.20 (Table 3).

Fig. 23. (a) Comparison between the hardening laws in Table 3 (lines) and the results by the membrane theory (symbols) with σ1=σ2=σ=σ (Eq. (18)). The equivalent strain
determination uses the measured values of ε1 and ε2 in Eq. (23); (b) evolution of the error in equivalent stress with the equivalent strain. The hardening coefficient of the materials is
n=0.20 (Table 3).
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with r0≠r90 and hardening coefficient, n=0.20 (Table 3). This ratio
follows a quasi-linear relationship with the stress path, but this does not
occur with the strain path. When the strain and stress paths are close to
1, both equivalent strains are nearly equal. Differences between von
Mises and Hill’48 equivalent strains are clearly noticeable only for the
stress paths higher than about 1.1 (or strain paths lower than about
0.95). For the extreme case of the studied materials, 0.5_2.25_4, the

ratio between the equivalent strains determined by von Mises and
Hill'48 is about 1.13.

In summary, the biaxial stress vs. curve determined under the
assumption of the simplified membrane theory equation, as recom-
mended by ISO 16808:2014 [21], and resorting to the von Mises
definitions of equivalent stress and strain can be significantly inaccu-
rate, in case of materials with r0≠r90, as will be seen in the next. Two

Fig. 24. (a) Comparison between the hardening laws in Table 3 (lines) and the results obtained by the membrane theory (symbols) using the Hill'48 stress and strain definitions; (b)
evolution of the error in equivalent stress with the equivalent strain. The hardening coefficient of the materials is n=0.20.

Fig. 25. Comparison between the hardening laws in Table 4 (lines) and the results obtained by the membrane theory (symbols) with σ1=σ2=σ=σ (Eq. (18)). The equivalent strain
determination uses the values of: (a) ε in Eq. (24) equal to the measured value of ε1; (b) the measured values of ε1 and ε2 in Eq. (23). The hardening coefficient of the materials is n=0.10
(Table 4).

Fig. 26. Evolution of the error in equivalent stress corresponding to: (a) Fig. 25(a); (b) Fig. 25(b).
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different approaches commonly used are analysed, according to the
strain measurement system available:

i) The measurement of the strains and radii of curvature are performed
using mechanical devices (see for example [10,30]), i.e. an extens-
ometer and a spherometer, respectively. In this case, only one strain
value is measured, generally in the rolling direction, ε1, and the
equivalent strain is assumed: ε=2ε1. The equivalent stress is
calculated from the simplified equation of the membrane theory

(Eq. (10)), which considers σ=σ=σ1=σ2;
ii) The measurement of strains and curvature radii are performed using

an optical device, as recommended by ISO 16808:2014 [21]. In this
case, it is possible to assess both principal strains ε1 and ε2, in order
to calculate the equivalent strain using Eq. (23). The membrane
theory is used considering σ=σ1=σ2 (Eq. (10)), in order to calculate
the equivalent stress using Eq. (18). This case becomes quite similar
to case (i), unless both principal strains in the sheet plane are
known, which allows using Eq. (23) instead of Eq. (24) for

Fig. 27. (a) Comparison between the hardening laws in Table 4 (lines) and the results obtained by the membrane theory (symbols) using the Hill'48 stress and strain definitions; (b)
evolution of the errors in equivalent stress with the equivalent strain. The hardening coefficient of the materials is n=0.10.

Fig. 28. Comparison between the hardening laws in Table 4 (lines) and the results obtained by the membrane theory (symbols) with σ1=σ2=σ=σ (Eq. (18)). The equivalent strain
determination uses: (a) the value of ε in Eq. (24) equal to the measured value of ε1; (b) the measured values of ε1 and ε2 in Eq. (23). The hardening coefficient of the materials is n=0.35.

Fig. 29. Evolution of the error in equivalent stress corresponding to: (a) Fig. 28(a); (b) Fig. 28(b).
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determining the equivalent strain; besides, the equivalent stress has
the same value as in case (i).

In this context, the biaxial stress vs. strain curves of the in-plane
anisotropic materials with r0≠r90 are now determined using the two
previously mentioned approaches. The points of the biaxial stress vs.
strain curve obtained during the test are compared with the hardening
curves in Tables 3 and 4. Figs. 22(a) and 23(a) compares the hardening
curves of the materials in Table 3 (with the hardening coefficient
n=0.20), with the results obtained from the membrane theory (Eq.

(10)), considering (as previously mentioned): (i) ε=2ε1 with the
principal strain ε1 measured along Ox (Fig. 22(a)); (ii) ε determined
by the Eq. (23) from the measured values of the principal strains
(ε1≠ε2) (Fig. 23(b)). Figs. 22(b) and 23(b) show the evolution of the
error in equivalent stress with the equivalent plastic strain, correspond-
ing to Figs. 22(a) and 23(a). The errors in equivalent stress are
relatively high in both approaches for the materials that show r0< 1
and r90> 1, simultaneously. For the material 0.5_2.25_4, the errors can
attain about 12% in Fig. 22(b) and 10% in Fig. 23(b).

It is important to understand the source of the errors shown in

Fig. 30. (a) Comparison between the hardening laws in Table 4 (lines) and the results obtained by the membrane theory (symbols) using the Hill'48 stress and strain definitions; (b)
evolution of the errors in equivalent stress with the equivalent strain. The hardening coefficient of the materials is n=0.35.

Fig. 31. Stress path vs. strain path for Hill'48 materials, with n=0.10, 0.20 and 0.35. The
fitted curve (dashed line) and respective parameters are also shown. The lower curve
(solid line) corresponds to Eq. (25).

Fig. 32. (a) Comparison between the hardening laws in Table 3 (lines) and the results obtained by membrane theory (symbols) using the Eqs. (25) and (26) for the materials with n=0.20;
(b) evolution of the corresponding errors in equivalent stress with the equivalent strain.

Fig. 33. Difference of error between Figs. 32 and 24, for the materials with n=0.20
(Table 3).
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Figs. 22(b) and 23(b), i.e. to what extent the assumptions used in the
analysis (σ1=σ2 and the von Mises criterion) are behind the errors. In
this context, Fig. 24(a) compares the hardening laws in Table 3 with the
results obtained taking into account the Hill’48 criterion for determin-
ing the stress paths from the observed strain paths (Eqs. (15) or (16)), at
the pole of the cap, coupled with the general equation of the membrane
theory (Eq. (9)). Fig. 24(b) shows the respective errors in equivalent
stress. It should be highlighted that, in general, this is not the

experimental case, i.e. the anisotropic criterion and respective para-
meters describing the anisotropy of the material are unknown, which
prevents the assessment of the stress path from the strain path (Eqs.
(15) or (16)).

For materials with r0≠r90, the errors in stress in Fig. 24(b) arise
from the determination of the curvature radius and the use of the
membrane theory approach under bulge test conditions. Thus, it is
appropriate to state that the differences of error in stress between

Fig. 34. (a) Comparison between the hardening laws in Table 4 (lines) and the results obtained by membrane theory (symbols) using Eqs. (25) and (26) for the materials with n=0.10; (b)
evolution of the corresponding errors in equivalent stress with the equivalent strain.

Fig. 35. (a) Comparison between the hardening laws in Table 4 (lines) and the results obtained with membrane theory (symbols) using Eqs. (25) and (26) for the materials with n=0.35;
(b) evolution of the corresponding errors in equivalent stress with the equivalent strain.

Fig. 36. Difference of error between: (a) Figs. 34(b) and 27(b), for the materials with n=0.10 (Table 4); (b) Figs. 35(b) and 30(b), for materials with n=0.35 (Table 4).
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Figs. 24(b) and 23(b) (or Fig. 22(a)) are due to the assumptions used for
determining the equivalent stress and strain. In this context, it can be
concluded that the errors due to the assumptions used in Figs. 22 and
23 are not negligible, particularly in the case of materials 0.5_2.25_4
and 0.6_1.8_3 and even for the material 1_2.25_3.5. These materials
have the major axis of the Hill’48 ellipse in the (σxx; σyy) plane relatively
far away from 45° (see Fig. 4).

Figs. 25–30 show the same kind of results, as for materials with
hardening coefficient n=0.20 (Figs. 22–24), but for the three aniso-
tropic materials studied with n=0.10 and 0.35 (see Table 4). The errors
in stress follow the same trend although showing slight differences from
those of materials with n=0.20. Also, the comparison of the results
obtained with von Mises criterion with those from Hill’48 criterion
leads to similar conclusions that for materials with n=0.20.

In summary, the commonly used experimental approaches to
determine the biaxial stress vs. strain curve from the bulge test, under
the assumption of equibiaxial stress (and also often equibiaxial strain),
can lead to relatively high errors, for instance in case of in-plane
anisotropic materials with r0≠r90 when the axis of the Hill’48 ellipse in
the (σxx; σyy) plane is relatively far away from 45°.

5. Is it possible to improve the determination of the biaxial stress –
strain curve?

To answer the question in the title of this section, the in-plane
anisotropic Hill'48 materials studied in the previous sections are firstly
analysed, in order to establish a possible methodology. Then, this
methodology is tested by means of results using the more flexible
Drucker+L and CB2001 yield criteria.

5.1. Methodology development

Fig. 31 plots the stress path vs. strain path of these materials, from
the average values of the results previously shown in Figs. 12 and 13.
Fig. 31 shows that it is possible to fit a power law (dashed line) to
establish a correlation between the observed stress and strain paths,
which allows a relatively accurate determination of the stress path from
the strain path (the point further away from the trend line corresponds
to the material 0.5_2.25_4 with n=0.10). Fig. 31 also shows a power
law (solid line) with exponent equal to −2:

⎛
⎝⎜

⎞
⎠⎟

σ
σ

ε
ε

= .2

1

2

1

−2

(25)

Both equations can be used with good enough accuracy for
determining the stress path from the experimentally measured strain
path (if using an optical measurement system as recommended by ISO
16808 (2014) [21]), as an alternative to the associated flow rule that
needs the a priori knowledge of the anisotropic yield criterion and the
respective parameters of the material. Eq. (25), with exponent equal to
−2, is chosen (instead of the exponent equal to −2.30, which
corresponds to the fitted power law) for determining the stress path

from the measured strain path. In fact, Eq. (25) ensures that all points in
Fig. 31 are very close or above the line defined by this equation, which
is not the case of the fitted equation with exponent equal to −2.30.
Therefore, Eq. (25) safeguards excesses in determining the stress path,
i.e. seeks that the evaluated biaxial stress vs. strain curve is between
those determined, as in Figs. 24(a), 27(a) and 30(a), by one side, and as
in Figs. 23(a), 25(b) and 28(b), by other side. Moreover, it safeguards
cases of materials with anisotropic behaviour described by other
criteria than Hill'48, for which the fitted power law (with exponent
equal to −2) may eventually also overestimate the stress path.

In summary, it turns out that in experimental cases of the bulge test,
the yield criterion and respective parameters of the material under
study are not known. But it is possible to assess the principal strains in
the sheet plane by using an optical measurement system and, conse-
quently, the stress path at the pole by using Eq. (25).

Now, the use of Eq. (25) to improve the determination of the stress
vs. strain curve, presuming that the strain path is measured by digital
correlation image technique [21], is analysed. Since the estimated
stress path is determined from Eq. (25), it is possible to determine σ1
and σ2, using Eq. (9), and then the equivalent stress can be calculated
using Eq. (18). The remaining issue is to determine the equivalent
strain. This is generally performed using the von Mises criterion.
However, as can be seen by comparing, for example, the strain gap
between the corresponding points in Figs. 23(b) and 24(b), the value of
equivalent strain depends on the yield criteria (see also Figs. 20 and
21). In this context, there exists a simple way to determine the
equivalent strain regardless of the yield criterion. In fact, it can be
shown that for linear stress and strain paths, which is approximately the
case for the bulge test (see Figs. 12 and 13), the definition of plastic
work leads to the following relationship:

σ ε σ ε σε+ = .1 1 2 2 (26)

The difference in the equivalent strain obtained by using Eq. (26)
when compared with Eq. (22) for the Hill’48 materials of Tables 3 and 4
is negligible (less than 0.3%), which indicates that the slight change of
the strain path observed during the test does not significantly affects
this calculation.

Fig. 32(a) shows the hardening curves of materials in Table 3 with
r0≠r90 and n=0.20, and the obtained points using the suggested
strategy, i.e. combining the membrane theory (Eq. (9)) with Eqs. (25)
and (26). The respective errors in stress are shown in Fig. 32(b). These
errors are less than those in Figs. 22 and 23, and quite similar to those
in Fig. 24, in which they arise almost entirely from the radius of
curvature determination and the use of the membrane theory approach
under bulge test conditions.

In order to better quantify the error in equivalent stress due to the
procedure now proposed, i.e. isolate this error from other sources, the
difference in equivalent stress error between those in the Fig. 32(b) and
in the Fig. 24(b) are shown in the Fig. 33. This difference of error, lower
than 3%, for the material 0.6_1.8_3, lower than 1.5% for 0.6_0.7_0.8 and
0.5_2.25_4, and lower than 0.5%, for all the other materials, shows the
capability of the proposed methodology for determining the hardening

Table 5
Designation of the materials and the respective parameters of Drucker+L criterion and Voce law. The average stress and strain paths observed during the bulge test are also shown.

Designation Parameters of the Drucker+L criterion Parameters of the Voce law Stress and strain paths

C1 C2 C3 C4=C5 C6 c Ysat [MPa] Rsat [MPa] CY σ2/σ1 ε2/ε1

A_c=2 0.684 1.168 1.168 1.168 1.268 2 671.54 356.04 7.16 1.214 0.952
B_c=1 0.669 1.141 1.141 1.141 1.239 1 674.28 357.50 7.19 1.235 0.911
C_c=2 0.750 1.547 1.149 1.281 1.450 2 657.47 348.59 7.01 1.367 0.908
D_c=1 0.676 1.394 1.035 1.219 1.307 1 666.07 353.15 7.10 1.413 0.882
E_c=−1 0.657 1.122 1.122 1.122 1.218 −1 686.26 363.85 7.32 1.319 0.854
F_c=−2 0.658 1.123 1.123 1.123 1.220 −2 696.06 369.05 7.42 1.376 0.832
G_c=−1 0.679 1.400 1.040 1.225 1.313 −1 690.92 366.32 7.36 1.566 0.806
H_c=−2 0.737 1.518 1.127 1.383 1.423 −2 709.73 376.30 7.565 1.665 0.773
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Fig. 37. Drucker+L materials in Table 5, with c>0: (a) normalized initial yield surfaces in the plane σ σ σ σ( / ; / )xx yy00 00 and corresponding stress paths; (b) distribution of rα in the sheet

plane.

Fig. 38. Drucker+L materials in Table 5, with c<0: (a) normalized initial yield surfaces in the plane σ σ σ σ( / ; / )xx yy00 00 and corresponding stress paths; (b) distribution of rα in the sheet

plane.

Fig. 39. CB2001 materials “A” to “E” in Table 6: (a) normalized initial yield surfaces in the plane σ σ σ σ( / ; / )xx yy00 00 and corresponding stress paths; (b) distribution of rα in the sheet plane.
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curve.
Similarly to Fig. 32(a), the Figs. 34(a) and 35(a) show the hardening

curves of the materials with n=0.10 and 0.35 (Table 4), having r0≠r90
and the obtained points using the suggested strategy, combining the

membrane theory (Eq. (9)) with Eqs. (25) and (26). The respective
errors in equivalent stress are shown in Figs. 34(b) and 35(b). For the
case of the material 0.5_2.25_4, the level of error is still relatively high,
but lower than that obtained using the procedure proposed by ISO

Fig. 40. CB2001 materials “F” to “I” in Table 6: (a) normalized initial yield surfaces in the plane σ σ σ σ( / ; / )xx yy00 00 and corresponding stress paths; (b) distribution of rα in the sheet plane.

Fig. 41. CB2001 materials “J” to “N” in Table 6: (a) normalized initial yield surfaces in the plane σ σ σ σ( / ; / )xx yy00 00 and corresponding stress paths; (b) distribution of rα in the sheet plane.

Fig. 42. CB2001 materials “O” to “S” in Table 6: (a) normalized initial yield surfaces in the plane σ σ σ σ( / ; / )xx yy00 00 and corresponding stress paths; (b) distribution of rα in the sheet plane.
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standard (Fig. 29(b)). The difference in equivalent stress error between
those in Figs. 34(b) and 35(b), and those in Figs. 27(b) and 30(b),
respectively, are shown in Fig. 36 (Fig. 36(a) is identical to Fig. 33 but
for n values equal to 0.10; and Fig. 36(b) is identical to Fig. 33 but for n
values equal to 0.35).

5.2. Testing the methodology for more flexible yield criteria

Materials with anisotropic behaviour described by non-quadratic
yield criteria, namely the Drucker+L (Eq. (2)) and the CB2001
criterion (Eq. (5)) are now analysed, in order to test the reliability of
the methodology. Examples of materials described by yield surfaces
with different shapes at the region around the equibiaxial stress path
are selected, particularly flattened and sharp surfaces. Some of the
CB2001 materials exhibit the “first and/or second order anomalous”
behaviours [34], and so significantly different from Hill'48 yield
surfaces. The Voce law (Eq. (8)) is now chosen for describing the
hardening behaviour of the materials.

5.2.1. Cases under analysis
The constitutive parameters of the analysed materials are given in

Table 5 (Drucker+L criterion and Voce law) and Table 6 (CB2001
criterion and Voce law). The designation adopted for each material
corresponds to a capital letter, followed by the value of the isotropic
parameter c, in case Drucker+L materials. In each table the materials
are organized according to the value of the strain path observed at the
pole of the cap, from the highest to the smallest; these tables also show
the observed stress paths. The hardening parameters in Tables 5 and 6
refer to curves corresponding to the observed stress paths. Figs. 37 and
38(a) display the Drucker+L yield surfaces in the plane
σ σ σ σ( / ; / )xx yy

0
0

0
0 . Figs. 37 and 38(b) shows the respective evolutions

of the anisotropy coefficient, rα, in the sheet plane. Figs. 39–42(a)
display the CB2001 yield surfaces in the plane σ σ σ σ( / ; / )xx yy

0
0

0
0 .

Figs. 39–42(b) show the respective evolutions of the anisotropy
coefficient, rα, in the sheet plane.

5.2.2. Results and analysis
Fig. 43 shows the observed stress path vs. strain path of the Drucker

+L and CB2001 materials (see Tables 5 and 6). The curve representing
Eq. (25) is also shown. As for Fig. 31, most points in Fig. 43 are close or
above the line defined by this equation. Two points below this line,
corresponding to the CB2001 materials “Q” and “S” in Table 6 are at
some distance from it. This means that, for these two materials, the use
of Eq. (25) visibly overestimates the stress path. The consequence of the
results of Fig. 43 in determining the biaxial stress vs. strain curves is
now analysed using illustrative examples concerning: (i) two Drucker
+L materials, “C_c=2” and “H_c=−2” in Table 5, placed on and above
the line defined by Eq. (25); and (ii) three CB2001 materials, “G”, “Q”
and “S” in Table 6, all below the line defined by Eq. (25) (see Fig. 43).

Fig. 44(a) shows the hardening curves of two materials with
anisotropic behaviour described by the Drucker+L criterion
(“C_c=2” and “H_c=−2”, in Table 5) and the points obtained by the
suggested strategy. The respective errors in equivalent stress are shown
in Fig. 44(b). Fig. 45 shows the results of the biaxial stress vs. strain
curves of the same two Drucker+L materials (“C_c=2” and “H_c=−2”,
in Table 5), obtained using the membrane theory (Eq. (10)) and ε
determined by Eq. (23), based on the measured values of the principal
strains (ε1≠ε2), as recommended by ISO 16808:2014. As for the Hill'48
materials, a high level of error that can attain 10%, is obtained when
the strain path is away from 1 (material H_c=−2–ε2/ε1=0.773). The
error is relatively low for the other illustrative example (material
C_c=2–ε2/ε1=0.908), but it still attains about 3%. Fig. 46 shows the
results obtained with the membrane theory (Eq. (9)), taking into
account the observed stress and strain paths; the equivalent stress
was determined using the Drucker+L definition and the equivalent
strain using Eq. (26). The errors of the suggested strategy (Fig. 44(b))
are quite similar to those in Fig. 46(b) and smaller than 2%, for both
cases. The analysis of the other Drucker+L materials, in Table 5, leads
to the same conclusion: the errors arising from the use of the proposed
methodology are insignificant.

Figs. 47–49 show the same type of results as the last three figures,
but for three materials (“G”, “Q” and “S”, in Table 6) with anisotropic
behaviour described by the CB2001 criterion. These three cases were
chosen as illustrative examples because their stress and strain paths put
them below the line defined by Eq. (25) and, therefore, the use of this
equation overestimates the stress path (see Fig. 43). In case of the
material “G” the error is quite low, whatever the methodology for
determining the stress vs. strain curve (Figs. 47–49). For the other two

Fig. 43. Stress vs. strain path for Drucker+L (triangles) and CB2001 (circles) materials.
The curve (solid line) corresponds to Eq. (25). The labelled points correspond to those
materials whose analysis is shown in the following figures.

Fig. 44. (a) Comparison between the hardening laws of Drucker+L materials “C_c=2” and “H_c=−2” in Table 5 (lines) and the results obtained by the membrane theory (symbols)
using the Eqs. (25) and (26); (b) evolution of the corresponding errors in equivalent stress with the equivalent strain (see Fig. 43).
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materials, “Q” and “S”, the use of the procedure as recommended by
ISO 16808:2014 leads, respectively, to similar and higher absolute
values of error than the use of Eq. (25). This equation overestimates the
stress paths and, consequently, the sign of the stress error changes. In
all other CB2001 cases, for which Eq. (25) underestimates the stress
path (see Fig. 43), the proposed methodology minimizes the errors,
especially when the strain path is further away from the equibiaxial.

In summary, the measurement of the strain path during the bulge
test, which can be performed by means of an optical device, allows to
estimate the stress path by using Eq. (25), which combined with Eq. (9)
gives the principal stresses and, consequently, the von Mises equivalent
stress. Finally, Eq. (26) allows the estimate of the equivalent strain. This
leads to a more accurate determination of the biaxial stress vs. plastic
strain curve, mainly for materials with strong anisotropy.

Fig. 45. (a) Comparison between the hardening laws of Drucker+L materials “C_c=2” and “H_c=−2” in Table 5 (lines) and the results obtained by the membrane theory (symbols) with
σ1=σ2=σ=σ (Eq. (18)). The equivalent strain determination uses the measured values of ε1 and ε2 in Eq. (23); (b) evolution of the error in equivalent stress with the equivalent strain
(see Fig. 43).

Fig. 46. (a) Comparison between the hardening laws of Drucker+L materials “C_c=2” and “H_c=−2” in Table 5 (lines) and the results obtained with membrane theory (symbols) using
the Drucker+L equivalent stress definition and Eq. (26); (b) evolution of the error in equivalent stress with the equivalent strain.

Fig. 47. (a) Comparison between the hardening laws of CB2001 materials “G”, “Q” and “S” in Table 6 (lines) and the results obtained by the membrane theory (symbols) using the Eqs.
(25) and (26); (b) evolution of the corresponding errors in equivalent stress with the equivalent strain (see Fig. 43).
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6. Conclusions

An extensive numerical study involving materials with various
isotropic and anisotropic behaviours in the sheet plane, described by
the Hill'48 criterion, and hardening behaviour described by the Swift
law, with three hardening coefficients, n=0.10, 0.20 and 0.35, was
performed in order to determine the biaxial stress vs. strain and
respective errors in stress, when using the standard procedures for
analysing the bulge test results.

The analysis of the geometry of the cap shows that, at each moment
of the test, the geometry is quite similar for both orthotropic directions
in the sheet plane, whatever the material anisotropy. This allows
simplifying the use of the membrane theory (ρ1=ρ2, in Eq. (1)), since
the radius of curvature is equal for both principal axes, O1 and O2,
parallel to the orthotropic axes, Ox and Oy. Also, the sheet thickness as
well as the equivalent stress and strain are equal, along both orthotropic
axes, up to a relatively large distance from the centre of the cap.

Equibiaxial stress and strain paths are observed at the pole of the
cap in the case of in-plane isotropic materials, as would be expected,
but this is not the case of anisotropic materials when the ratio between
both measured principal strains in the sheet plane is different from 1. In
this latter case, the inability of occurrence of equibiaxial stress and
strain paths is a natural consequence of the normality condition
between the stress and the increment of strain (see Fig. 14).

The errors associated with the approach traditionally used, which
considers equibiaxial stress (and eventually strain) paths at the pole of
the cap, isotropy and the simplified equation of the membrane theory,

were quantified according to the anisotropy of the sheet. Moreover, an
empirical equation for the circular bulge test relating the stress path
with the strain path at the pole of the cap (σ2/σ1=(ε2/ε1)−2) is
suggested to be used, regardless of the yield criterion that better
describes the anisotropic behaviour of the material. This equation is
based on Hill’48 results, but it was tested for two non-quadratic yield
criteria, the Drucker+L and CB2001. It allows determining the stress
path based on the knowledge of the strain path, which can be assessed
by digital image correlation. In this context, the use of the simplified
equation of the membrane theory (Eq. (10)) can be overcome by using
the general equation of the membrane theory (Eq. (9)) combined with
Eq. (25). It is also suggested a procedure to determine the equivalent
strain (Eq. (26)), based on the plastic work definition, to be used under
the condition that both stress and strain paths are known. This greatly
improves the accuracy of the stress vs. strain curve, mainly in case of
materials with strong anisotropy.
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Fig. 48. (a) Comparison between the hardening laws of CB2001 materials “G”, “Q” and “S” in Table 6 (lines) and the results obtained by the membrane theory (symbols) with
σ1=σ2=σ=σ (Eq. (18)). The equivalent strain determination uses the measured values of ε1 and ε2 in Eq. (23); (b) evolution of the error in equivalent stress with the equivalent strain
(see Fig. 43).

Fig. 49. (a) Comparison between the hardening laws of CB2001 materials “G”, “Q” and “S” in Table 6 (lines) and the results obtained with membrane theory (symbols) using the CB2001
equivalent stress definition and Eq. (26); (b) evolution of the error in equivalent stress with the equivalent strain.
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