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Introduction

Body-in-white

More than 300 sheet metal 

parts:

• Closures 

• Structural parts 

• Reinforcements 

Current challenges in the sheet metal forming industry:

• Adoption of new materials (ultra high strength steels, lightweight alloys, etc.) 

• Reduced manufacturing cost and lead times

• Shorter product development cycles
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• Today the numerical simulation is an indispensable tool in the development 

of new components manufactured by forming

• Simulation is used to predict formability issues before going into production

Sheet metal forming simulation

Numerical 
simulation

Friction

Material 
behavior

Failure 
criterion

Contact

The numerical solution is 

strongly influenced by the 

computational models 

implemented in the FEM code 
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• Frictional contact between the forming tools and the blank

• Typically the friction behavior is modelled by the Coulomb’s law

• The formability predicted by simulation is significantly influenced by the friction 

coefficient used in the FE model (difficult to evaluate experimentally)

Objective:

Understand the relationship between the microscopic contact and the 

macroscopic friction forces generated during sliding contact. 

• Finite element simulation of contact between rough surfaces

Frictional contact 

Existing friction laws are inadequate for the 

realistic description of local contact conditions
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• All engineering surfaces are rough under certain magnification

• Most of rough surfaces are fractals, i.e. self-repeated patterns at every scale

• Frictionless contact between two linearly elastic half-spaces is equivalent to 

contact between an effective elastic rough half-space and a rigid flat 

surface

• Sinusoidal rough surface

Surface roughness

Measured surface roughness Self-affine surface  
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• Half asperity studied under plane strain conditions 

• 2 geometries: asperity height g=1 μm and g=5 μm

• 2 materials: reduced Young modulus E*=43.9 GPa and E*=65.9 GPa

FE model – 1D sinusoidal surface

λ=100 μm
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(linear elastic)
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• Vertical displacement of the rigid surface until achieving full contact 

• 50000 hexahedral finite elements (half asperity)

• Frictionless contact (μ=0)

• DD3IMP in-house finite element code

FE model – 1D sinusoidal surface

250x200x1=50,000 FE
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• Some definitions:

A’= A/A0 – ration between real contact area (A) and nominal contact area (A0)

– average contact pressure

– mean contact pressure

F – applied force

– average contact pressure at full contact

Contact pressure distribution:

Analytical solution for 1D sinusoidal surface
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• Evolution of the real contact area for 2 materials and 2 geometries of asperity

• Numerical results in very good agreement with the analytical solution

Real contact area (analytical vs simulation)

The difference between 

analytical and numerical 

solution increases for large 

values of asperity amplitude

Full
contact

Light
load
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• Material: E*=65.9 GPa; asperity geometry: g=5 μm (largest amplitude)

• Contact pressure slightly overestimated by the analytical solution
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• von Mises stress distribution on half asperity, for 3 values of real contact area

• Maximum value of von Mises stress lies in the asperity interior (like in the 

Hertz solution)

Stress distribution (E*=65.9 GPa and g=5 μm)

A’=0.25 A’=0.50 A’=1.00

[GPa]

p ̅=F/A0=1.5 GPa p ̅=F/A0=9.4 GPap ̅=F/A0=5.0 GPa
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• Evolution of the mean contact pressure for 2 materials and 2 geometries

• The difference between analytical and numerical solution increases for large 

values of asperity amplitude

Mean contact pressure evolution (analytical vs simulation)

Decrease of the mean 

contact pressure because 

the real contact area 

increases quickly at the end
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• The results previously presented consider linear elastic material behaviour

• Very good agreement between numerical and analytical solutions

New analysis

• Elastic-perfectly plastic material behaviour

• Elastic and plastic properties: E*=43.9 GPa and σy=1 GPa

• Elastic and plastic properties: E*=65.9 GPa and σy=2 GPa

• 2 geometries: asperity height g=1 μm and g=5 μm

Mechanical material behavior 
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• Small increase of the mean contact pressure after onset of plasticity 

• Onset of plasticity identified by the deviation of numerical solution from the 

analytical solution (linear elastic)

Mean contact pressure evolution (elastic-perfectly plastic)
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• Equivalent plastic strain distribution on half asperity (3 different instants)

• Maximum value arises clearly in the asperity interior 

Plastic strain distribution (E*=65.9 GPa and σy=2 GPa)

A’=0.25 A’=0.50 A’=1.00

p ̅=F/A0=1.1 GPa p ̅=F/A0=4.9 GPap ̅=F/A0=3.0 GPa
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• Material: E*=65.9 GPa and σy=2 GPa; asperity geometry: g=5 μm

• Contact pressure approximately constant on the asperity tip

• Slight increase as the applied force rise (real contact area)

Contact pressure distribution

Analytical
(elastic)

Numerical
(elastic-plastic)
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Next steps – 2D sinusoidal surface

• Analytical solution unavailable for elastic material behaviour (2D wavy surface)

• Vertical displacement of the rigid surface (frictionless contact)

• Linear elastic material behaviour

50x50x50=125,000 FE
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Preliminary results – linear elastic material

• Evolution of the contact area (red) with applied load

• From circular to square-like shape of contact area

C
ir

cu
la

r 
n

o
n

-c
o

n
ta

ct
 

ar
ea

C
ir

cu
la

r 
co

n
ta

ct
 

ar
ea



CMN 2017
Technical University of Valencia, Spain

D.M. Neto
diogo.neto@dem.uc.pt 

19

Conclusions

• Finite element simulation of frictionless contact between a deformable 

sinusoidal asperity and a rigid flat

• Both linear elastic and elastic-perfectly plastic material behaviour 

• Roughness described by a sinusoidal function (amplitude and wavelength)

• Very good agreement between numerical and analytical solution considering 

elastic material and 1D wavy surface

• The increase of the mean contact pressure stabilizes after onset of plasticity 

• Contact pressure on the asperity tip is approximately constant when the 

plastic deformation is predominant

• Study of 2D sinusoidal surfaces is essential to approximate real surfaces
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