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Introduction

Body-in-white

More than 300 sheet metal 

parts:

• Closures 

• Structural parts 

• Reinforcements 

Current challenges in the sheet metal forming industry:

• Adoption of new materials (ultra high strength steels, lightweight alloys, etc.) 

• Reduced manufacturing cost and lead times

• Shorter product development cycles
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• Today the numerical simulation is an indispensable tool in the development 

of new components manufactured by forming

• Simulation is used to predict formability issues before going into production

Sheet metal forming simulation

Numerical 
simulation

Friction

Material 
behavior

Failure 
criterion

Contact

The numerical solution is 

strongly influenced by the 

computational models 

implemented in the FEM code 
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• Increased adoption of advanced high strength 

steels (AHSS) in the automotive industry

• Large contact pressures and consequent 

frictional forces

• Heat generated by plastic deformation 

(high stress values)

• Heat generated by frictional contact 

sliding (large contact forces)

Heat generation
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• Originally developed to evaluate the friction coefficient between the sheet and 

the tools

Objective:

Thermomechanical analysis of the draw bead test

• Influence of different factors, namely the bead penetration, the side clearance, 

the pulling speed and the friction coefficient.

Draw bead test
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• R=10.5 mm

• Dual phase steel DP780 

Draw bead test – dimensions 
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• DD3IMP finite element code

• Cylinders are considered rigid and isothermal (environment temperature)

• Blank discretized with hexahedral finite elements 

Finite element model
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• Mechanical behaviour assumed elastoplastic

• Isotropic hardening defined by the Swift law

• Anisotropy described by the Hill’48 yield criterion

Material mechanical behavior 
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• Differential equation that defines the thermal conduction

• Thermal properties of the dual phase steel DP780

Heat transfer

2 2 2

p f2 2 2
0

T T T T
c k q Q

t x y z


    
      

    

Property Value

Mass density 7858 kg/m3

Specific heat capacity 442 J/(kg·K)

Thermal conductivity 42.3 W/(m·K)
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• Thermal power generated by plastic deformation

• Thermal power generated by the frictional contact

• Fraction of plastic work converted into heat defined by the Taylor–Quinney factor 

(β=0.9)

• Fraction of frictional power converted into heat (ξ=1.0)

• Heat generated equality partitioned between the two contacting bodies (η=0.5)

Heat generated

p p

p ( : )q w   σ ε

f t t( )Q   t g
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• Boundary condition for free convection (hconv=3.4 W/(m2K))

• Boundary condition for contact conductance

Heat transfer (boundary conditions)

conv conv ( )q h T T 

c c obs( )q h T T 
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Results

Sensitivity analysis performed considering the reference the model:

• 21.8 mm of bead penetration

• 1.2 mm of side clearance

• 1 mm/s of pulling speed

• 0.15 of friction coefficient

• Definition of the contact angles:

θ1

θ2

θ3
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Results – bead penetration 

• Increase of the contact angles with the bead penetration and stabilization 

during the pulling stage

• Different contact angles between left and right shoulders (θ1 ≠ θ3) 
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Results – bead penetration 

• Influence of the bead penetration on the contact angles (steady state regime): 

large impact!

• Reduction of the heat losses to the environment and to the cylinders 
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Results – bead penetration 

• Influence of the bead penetration on the temperature rise

• Low contact areas leads to large values of temperature rise (low heat losses 

through contact conductance)
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Results – side clearance 

• Influence of the side clearance on the contact angles (steady state regime)

• Increasing the side clearance leads to the reduction of the contact area 
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Results – side clearance 

• Influence of the side clearance on the temperature distribution

• Reduction rs
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Results – pulling speed

• Influence of the pulling speed on the temperature distribution: large impact!

• Reduction of the heat losses to the environment and to the cylinders 
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Results – friction coefficient

• Influence of the friction coefficient on the pulling force evolution: large 

impact!
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Results – friction coefficient

• Influence of the friction coefficient on the temperature rise: negligible!

• Equivalent plastic strain distribution similar for all cases
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Conclusions

• The proposed finite element model takes into account both the heat 

generated by plastic deformation and friction, as well as the heat losses to the 

environment by free convention and the contact conductance with the forming 

• Both linear elastic and elastic-perfectly plastic material behaviour 

• Roughness 

• Although the contact forces are strongly influenced by the coefficient of 

friction, its influence on the temperature rise is negligible

• The temperature rise is predominantly influenced by pulling speed, which is 

unimportant for low values of pulling speed
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