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Abstract. It is well-established that the ductile fracture in metallic materials is a highly stress state dependent physical 
process. Past research has focused on the development of numerical tools that describe the mechanisms of the ductile 
damage. In this framework, the computed damage distribution is affected by the accuracy in the description of the stress 
state history, aside from the choice of the damage model. Thus, the main objective of this work is to assess the influence 
of the discretization adopted in the gauge area of fracture-calibration specimens, in the evolution and distribution of the 
field variables generally used to describe the stress state: the stress triaxiality and the Lode parameter. The numerical 
analysis is performed with the in-house solver DD3IMP. The results show that the required mesh refinement changes 
particularly when plastic instabilities arise. Moreover, the stress state variables can present an heterogenous distribution at 
the integration point level, which is in general smoothed when analysing the results at the nodes. 

INTRODUCTION 

The evaluation of formability of thin-walled components still represents a non-trivial issue in sheet metal forming 
process. Past research has focused on the development of numerical tools that describe internal damaging and, 
ultimately, fracture of ductile materials, which is known to be strongly dependent on the stress state [1]. In this context, 
damage models must be able to capture the characteristic load-path dependent failure behaviour and provide a reliable 
prediction of the stress and strain histories. Thus, damage models establish the link between field variables (e.g. stress 
tensor, stress triaxiality) and the progressive deterioration towards fracture. One way of achieving this connection is 
by the so-called uncoupled models, which employ conventional plasticity models together with a damage indicator to 
predict ductile fracture. In other words, a conventional finite element (FE) simulation is carried out and the damage is 
evaluated exclusively as a post-processing step of the FE solution. The damage accumulation is formulated empirically 
or semi-empirically through a scalar internal variable D, with the general criterion: 
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where p  is the equivalent plastic strain, P
f  is the critical value of equivalent plastic strain at fracture for a given 

loading path, σ  is the Cauchy stress tensor and pε  is the plastic strain tensor. The integrand p( , ),f σ ε  is the weighting 
function of damage and represents a general function of the field variables. Fracture is considered to occur when the 
damage indicator D, computed at the integration point (in this work, Gauss point (GP)) of the FE model, exceeds a 
critical damage value, c .D  
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The stress state is usually described by two dimensionless parameters: the stress triaxiality, η, and the Lode angle 
parameter, L . Let 1I  denote the first invariant of the Cauchy stress tensor, ,σ  and 2 3,  J J  the second and third 
invariants of the deviatoric stress tensor, ',σ  respectively. Hence, one can write: 
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m  is the mean stress and   is the normalized 3J . The Lode angle can be understood as a quantification of the 
proximity (or remoteness) of a stress state relative to the pure-shear stress state. Its effect on the material damaging is 
less intuitive, but recent studies indicate that it can be as important as the stress triaxiality on the equivalent strain to 
fracture [1]. Any loading path can be defined by the pair L( , ).   Note that a third independent parameter (e.g. a stress 
invariant) is required to set the magnitude of the stress state and thus fully define it. 

Analysing Eq. (1), one can argue that the correct prediction of the accumulated damage is inherently related to the 
reliable computation of the field variable distributions that integrate the weighting function, p ( , ).f σ ε  Thus, the main 
goal of the present work is to analyse the influence of the discretization adopted in the gauge area of test specimens, 
commonly used to calibrate ductile fracture models, in the evolution and distribution of the field variables L( , ).   
Two stress states, i.e. L( , )  combinations, of great importance to the sheet metal forming process are targeted: (i) 
uniaxial tension – (1/3,1);  and (ii) simple shear – (0,0).  

NUMERICAL MODEL 

Plasticity Model 

The numerical tests performed in the present work consider a 1 mm thick dual phase steel DP780. According to 
Abedini et al. [2] this material displays relatively isotropic mechanical properties. Therefore, the yield of the material 
is described using the isotropic von Mises criterion: 

    p Mises p Mises

3
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and an associated flow rule is adopted. p  is the equivalent plastic strain, defined as work-conjugate of the von Mises 
equivalent stress, Mises .   pY   denotes the flow stress that is modelled through a combined Swift-Voce isotropic 
hardening law, as follows: 
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in which   is a linear weighting factor,  0, ,K n  are the Swift law parameters and  0 sat Y, ,Y Y C  are the Voce law 
parameters. The elastic behaviour is assumed isotropic and constant, described by the Hooke’s law parameters  , .E   
The required material parameters have been identified by Roth and Mohr [3] and are summarized in Table 1. 

Specimen Geometries and Discretization 

The uniaxial tension stress state is achieved using a standard flat tensile specimen. Due to material and geometrical 
symmetry conditions, only one eighth of the tensile specimen is modelled. The relevant model dimensions and the 
coordinate system adopted are presented in Fig. 1. The specimen grip section is also modelled such that the 
displacement of the nodes contained in the grip free surface are constrained, except in the axial direction, for which a 
displacement of 5.1 mmxu   is prescribed. This ensures that the initial stress and strain fields are fully homogeneous 
in the gauge section until the triggering of the initiation of localized necking. Concerning the simple shear stress state, 
Peirs et al. [4] shear specimen is adopted, which was designed such that an applied tensile load originates a shear 
stress in its gauge section, located in the centre of the specimen. The geometry and relevant dimensions of this flat 
specimen are shown in Fig. 2. The eccentric position of the notches intend to maintain a hypothetical zero stress  
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TABLE 1. Elastic properties and combined Swift-Voce hardening law parameters of the DP780 steels (as in Roth and Mohr [3]). 

Elastic Properties  Voce Law  Swift Law Combined Law 

E [GPa] ν [-]  0Y  [MPa] satY  [MPa] YC [-]  K [MPa] 0 [-] n [-]  [-] 

194 0.33  349.54 885.9 93.07  1315.4 0.28∙10-4 0.146 0.7 
 
triaxiality stress state up to large strains. Exploiting the symmetry of the specimen geometry only half of its thickness 
is modelled. A fixed boundary condition is applied at the lower-end of the grip, and a total displacement of 

1.4 mmxu   along the x-direction (see Fig. 2), is prescribed at the opposite end. 
Regarding the FE discretization, the gauge sections of both specimens are discretized with structured and regular 

meshes. Since the area surrounding the gauge section undergoes very small plastic strain, this zone is discretized with 
a coarse and unstructured mesh. Given the different length scale of the studied specimens, the average finite element 
size, elem,l  is defined according to the dimensionless parameter elem char( / ),l l   such that the adopted in-plane mesh 
refinement is equivalent for both numerical tests. For the tensile specimen, the characteristic dimension, char ,l  selected 
corresponds to the smallest dimension of the gauge section, i.e. its width, 0w  (see Fig. 1). As for the shear specimen, 
the characteristic dimension is the gauge section length, ,l  (see Fig. 2). Three in-plane (P) mesh discretizations are 
considered, corresponding to µ values of 20, 40 and 100. Additionally, three discretizations along the sheet thickness 
direction are employed, corresponding to 2, 4 and 8 layers (L). Thus, four FE meshes are generated combining the 
previous in-plane and through-thickness discretizations, labelled by: P020L2, P040L4, P100L4 and P100L8. All 
meshes comprise eight-node hexahedral solid finite elements and a selective reduced integration (SRI) technique is 
employed, with eight and a single GP for the deviatoric and hydrostatic parts of the velocity field gradient, 
respectively. The main characteristics of the adopted meshes are summarized in Table 2, as well as the respective 
computational requirements, quantified by the total elapsed CPU time1. The simulations are performed with the in-
house quasi-static elastoplastic fully implicit finite element solver DD3IMP, specifically developed to simulate sheet 
metal forming processes [5,6]. 
 

 Structured mesh 

 Unstructured mesh 

 Gauge section length l0 [mm] 30 

 Gauge section width w0 [mm] 10 

 Sheet thickness t [mm] 0.5 

FIGURE 1. Dimensions of the modelled tensile specimen gauge section. Delimitation of the structured and unstructured zones. 
 

 

 Structured mesh 

 Unstructured mesh 

 Notch eccentricity e [mm] 1 
 Gauge section length l [mm] 3 
 Notch radii R [mm] 1 
 Dist. between axes h [mm] 5 
 Sheet thickness t [mm] 0.5 

FIGURE 2. Dimensions of Peirs et al. [4] specimen gauge section. Delimitation of the structured and unstructured zones. 
 

TABLE 2. Mesh characteristics and corresponding computational time for the finite element simulations. 

Mesh 
Tensile specimen  Shear specimen 

# Elements # Nodes CPU time [h]  # Elements # Nodes CPU time [h] 
P020L2 2728 4380 0.02 (42 Steps)  3438 5502 0.01 (42 Steps) 
P040L4 20212 26105 0.20 (49 Steps)  20032 25775 0.06 (42 Steps) 
P100L4 122004 154410 1.69 (56 Steps)  109788 138420 0.46 (44 Steps) 
P100L8 244008 277938 8.59 (58 Steps)  219576 249156 2.16 (46 Steps) 

                                                 
1 All numerical simulations are carried on a single computer machine equipped with an Intel® Core™ i7-8700K (6C/12T) @ 3.70 GHz base 
frequency processor with 2x8GB DDR4 @ 2400 MHz CL17 memory kit on a 64-bit Windows 10 Pro for Workstations operating system. 
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RESULTS AND DISCUSSION 

The computed force-displacement curves, along with the evolution of the equivalent plastic strain (EPS) at the GP 
closest to the origin of the studied specimens, are depicted in Fig. 3. Regarding the tensile specimen (see Fig. 3a), it 
is verified that, until diffuse necking occurs – i.e. a maximum axial load is reached, the FE discretization has little 
influence on the numerical results. Past this point, localized necking is reached, (manifested by severe thinning on a 
narrow diagonal band), and a fully three-dimensional stress state arises. Given the resultant high strain gradients, the 
FE results become sensitive to mesh refinement, and, thus, very fine meshes are needed to reliably compute the stress 
and strain distributions. This ultimately justifies the divergence of the plotted global and local variables in Fig. 3a, at 
the end of the simulation. Note that the more refined the FE mesh, the greater is the predicted ultimate EPS. The force-
displacement evolutions for the shear specimen tests show a very distinct behaviour. Since no through-thickness 
necking occurs, the strain distribution in the gauge section is much more homogeneous during the entire deformation 
process. Hence, both the computed force and EPS are less sensitive to the mesh refinement. 

Figure 4 shows the evolution of the studied field variables, L( , ).   The same observations hold true for this case, 
i.e. since necking only takes place in the tensile test, the stress triaxiality and the Lode parameter are shown to be more 
sensitive to the mesh refinement. Note that prior to necking, the evolution of both parameters coincide with their 
theoretical values, regardless of the discretization. On the contrary, for the shear specimen, despite the similar results 
regarding the mesh refinement, the stress state parameters L( , )  vary during the entire deformation process around 
the theoretical values for a pure-shear stress state. Note that adding an additional 4 layers to the finest in-plane mesh 
(P100) does not considerably improve the numerical results, even for the tensile test, for which a through-thickness 
strain gradient appears after necking.  

 

  
(a) (b) 

FIGURE 3. Influence of the FE mesh on the force-displacement evolution (global variable) and on the equivalent plastic strain 
evolution (local variable) for the: (a) tensile specimen; (b) shear specimen. 

 

  
(a) (b) 

FIGURE 4. Influence of the FE mesh on the evolution of the field variables: (a) stress triaxiality; (b) Lode angle parameter, for 
both specimens. The data is evaluated at the GP closest to the specimen’s coordinate system origin. 
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(a) (b) 

  
(c) (d) 

FIGURE 5. Influence of the FE mesh on the distribution of the stress triaxiality for: (a) tensile specimen; (b) shear specimen; and 
the Lode angle parameter distribution for: (c) tensile specimen; (d) shear specimen. Data evaluated at the final simulation step. 

 
Figure 5 shows the distribution of the stress state parameters L( , )   at the final instant of the deformation process, 

for both specimens. The distributions are evaluated at the GPs and at the nodes of the FE model (unweighted arithmetic 
mean of the neighbouring GPs values), along a given direction. For the tensile specimen, the transverse direction, 
normalized by its initial width, 0/ ,y w  is chosen. As for the shear specimen, the distribution is evaluated along a natural 
coordinate, ξ, collinear with the axis on which a narrow strain band arises, as shown in Fig. 6a. 

Figure 5a and Fig. 5c clearly corroborate that the prediction of the post-necking distribution of the field variables 
L( , )   requires finer discretizations. Indeed, the finer the mesh, the greater the detail in which the field variable 

gradients are captured. Regarding the shear specimen, given the absence of a plastic instability, the distribution of 
L( , )   at the centre of the gauge section is independent of the mesh refinement. The sensitivity to the discretization 

is recovered only at the gauge section border, where, as shown in Fig. 6b, there is an abrupt change of the stress state 
due to the free-boundary effects.  

Concerning the distribution of the parameters L( , )   at the GPs, there is a departure from the results at the nodes 
– that is, the respective trend line – takes place in both specimens. In other words, significant oscillations of the results 
at the GPs are computed, both between adjacent FE and within a FE itself. Note that these discontinuities do not vanish 
with the mesh refinement and their amplitude vary throughout the domain of Fig. 5. In order to analyse the source of 
these unstable distributions, Fig. 7a and Fig. 7b show the distribution of the pair of invariants that define the stress 
state parameters L( , )   (see Eq. (3) and Eq. (4), respectively), at the final instant of the tensile test. Analysing Fig. 7 
it is clear that the oscillations of the stress triaxiality and the Lode angle parameter are exclusively due to the unstable 
distribution of the mean stress (i.e. 1I - invariant) and the 3J - invariant, respectively. Indeed, the von Mises equivalent 
stress (i.e. 2J - invariant) does not show any kind of oscillation. 

As a result of the non-uniform computation of the field variables L( , )   at the GPs, uncoupled damage models 
may predict a highly local and equally discontinuous damage distribution at the GPs, which could lead to a somewhat 
misleading prediction of fracture. The evaluation of the FE results only at the nodes, i.e. in a smoothed way, can 
conceal problems of excessive heterogeneity of the distribution of local variables such as L( , )   and, ultimately, of 
the ductile damage, D. 
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(a) (b) 

FIGURE 6. Contour plots of the shear specimen at the final simulation step: (a) Equivalent plastic strain; (b) normalized mean 
stress (at section B-B). Note the localized band within the gauge section and the thickening along the free-boundary. 

 
(a) (b) 

FIGURE 7. Tensile specimen’s final distribution at the Gauss points (GP) of the: (a) normalized mean stress; (b) third invariant 
of the deviatoric stress tensor. For comparison, the normalized von Mises equivalent stress is equally represented.  

CONCLUSIONS 

In this work, a FE analysis is performed in order to assess the mesh-sensibility of the evolution and distribution of 
two field variables: the stress triaxiality and the Lode angle parameter. For this purpose, two fracture-characterization 
specimens are studied, namely, a flat tensile specimen and a flat simple shear specimen, proposed by Peirs et al. [4]. 

The results show that the required mesh refinement changes particularly when plastic instability occurs. The field 
variable distribution at the GPs shows that non-negligible oscillations can arise relative to the smoothed results at the 
nodes. Since, within damage models, the internal damage variable is computed at the GP level, an excessively 
heterogeneous distribution of the field variables may equally lead to a discontinuous damage distribution.  
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