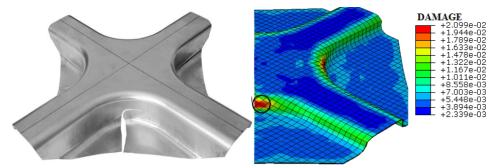
UNIVERSIDADE D COIMBRA

An assessment of a micromechanical damage model for porous solids exhibiting tension-compression asymmetry

João Brito¹, Marta Oliveira¹, Diogo Neto¹, José Alves², Luís Menezes¹

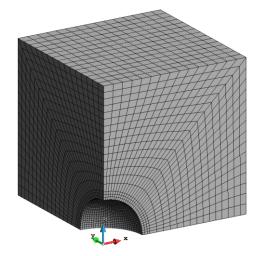
¹CEMMPRE – Department of Mechanical Engineering, University of Coimbra, Portugal ²CMEMS – Microelectromechanical Systems Research Unit, University of Minho, Portugal


> Congress on Numerical Methods in Engineering University of Minho - Portugal July 1-3, 2019

Introduction

- Introduction of new materials with high <u>strength-to-weight ratio</u>:
 - Reduction of the overall mass of the structures;
 - Meet the ever-stringent standards on passenger safety and gas emissions.
 - Reduction of ductility ⇒ Lower ability to undergo plastic deformation.
- ➢ Success of the forming operation ⇒

Ability to <u>predict</u> the occurrence of forming defects, viz. **ductile fracture**

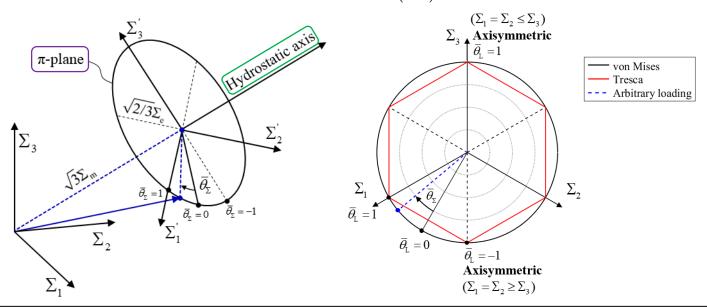

Development of reliable numerical tools to describe the internal <u>damaging</u> and failure of ductile materials.

(Amaral, R. et al., 2016)

Objectives

- Assess the response of the CPB06 porous model regarding the damage evolution and mechanical response of porous solids exhibiting tensioncompression asymmetry (SD effects).
- The predictive capability of the model is evaluated comparing the performed numerical tests with analogous results on <u>unit cell</u> studies.
 - Numerical simulations on a single <u>finite element</u>:
 - Axisymmetric stress states;
 - Isotropic form of the damage model;
 - Simulations performed with DD3IMP in-house FE solver.

3D unit cell model (Alves and Cazacu, 2015)


Description of the stress state

- > In ductile fracture mechanics, the <u>stress state</u> is usually described by **two** adimensional parameters, relating the I_1^{Σ} , J_2^{Σ} and J_3^{Σ} stress invariants:
 - Stress triaxiality:

$$T_{\Sigma} = \frac{1}{3} \frac{I_1^{\Sigma}}{\sqrt{3J_2^{\Sigma}}} = \frac{\Sigma_{\rm m}}{\Sigma_{\rm e}},\tag{1}$$

Lode parameter:

$$\overline{\theta}_{\Sigma} = \frac{2}{\pi} \operatorname{arcsin}(\xi_{\Sigma}), \text{ with } \xi_{\Sigma} = \frac{3\sqrt{3}}{2} \frac{J_{3}^{\Sigma}}{\left(J_{2}^{\Sigma}\right)^{3/2}}.$$
 (2)

An assessment of a micromechanical damage model for porous solids exhibiting T-C asymmetry

CPB06 Porous Model

Quadratic and isotropic form of the <u>CPB06</u> yield criterion (Cazacu, Plunkett and Barlat, 2006):

$$\varphi(\Sigma', k, a, \sigma_{\rm T}) = \tilde{\Sigma}_{\rm e} - \sigma_{\rm T} = 0,$$
(3)

with

$$\tilde{\Sigma}_{e} = m \left[\sum_{i=1}^{3} \left(\left| \Sigma_{i}^{'} \right| - k \Sigma_{i}^{'} \right)^{2} \right]^{\frac{1}{2}}; \text{ and } m = \sqrt{\frac{9}{2\left(3k^{2} - 2k + 3\right)}}.$$
(4)

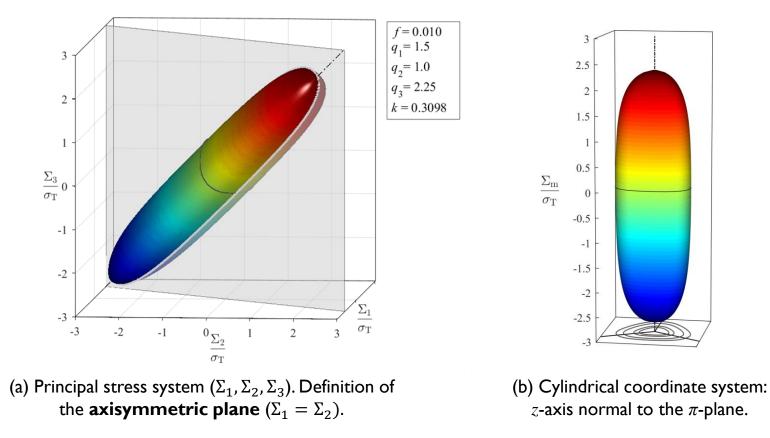
- Parameter k quantifies the tension-compression asymmetry (SD effects).
- Cazacu and Stewart (2009) derived the following isotropic plastic potential for porous aggregates containing randomly distributed spherical voids:

$$\varphi\left(\boldsymbol{\Sigma}',\boldsymbol{k},\boldsymbol{\sigma}_{\mathrm{T}},f\right) = \left(\frac{\tilde{\boldsymbol{\Sigma}}_{\mathrm{e}}}{\boldsymbol{\sigma}_{\mathrm{T}}}\right)^{2} + 2q_{1}f\cosh\left(\frac{z_{\mathrm{s}}}{2\boldsymbol{\sigma}_{\mathrm{T}}}\right) - q_{3}f^{2} - 1 = 0,$$
(5)

with

$$[\overline{z_{s}}] = \begin{cases} 1 & \text{if } \Sigma_{m} < 0; \\ \left(\frac{\sigma_{T}}{\sigma_{C}}\right) = \sqrt{\frac{3k^{2} + 2k + 3}{3k^{2} - 2k + 3}} & \text{if } \Sigma_{m} \ge 0, \end{cases}$$
(6)

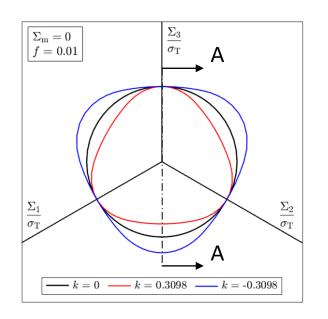
• Internal damage variable is the void volume fraction (or **porosity**), f.

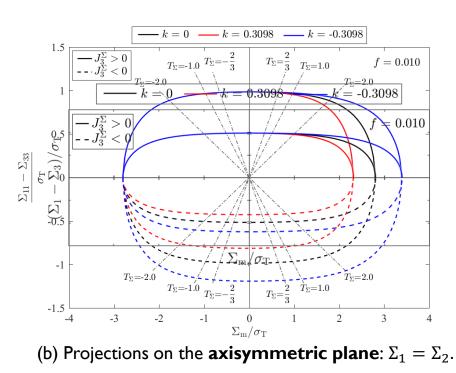

SD Effects and Materials

- The tension-compression asymmetry is more pronounced in metals with <u>hexagonal closed packed (HPC) structure:</u>
 - *α*-titanium, magnesium, zirconium, etc;
- > Materials with cubic structure can also exhibit some SD effects, e.g.:
 - High strength steels (HSS), molybdenum and aluminium alloys, etc;
- The study is conducted for three virtual materials exhibiting different SD effects (in agreement with Hosford and Allen, 1973):
 - k = 0 ($\sigma_T / \sigma_C = 1$), which corresponds to a von Mises material;
 - k = 0.3098 ($\sigma_T / \sigma_C = 1.21$), corresponding to a fully-dense isotropic BCC material;
 - k = -0.3098 ($\sigma_T / \sigma_C = 0.83$), corresponding to a fully-dense isotropic FCC material.

CPB06 Porous Model

> Three-dimensional representation of the yield surfaces.


• Material with k > 0 and f > 0 (i.e. in the presence of voids/damage).


CPB06 Porous Model

> Two-dimensional representation of the yield surfaces.

- Three materials (different k values);
- The straight lines through the origin contain all the points that verify a given Σ_m / Σ_e ratio, i.e. same **stress triaxiality**.

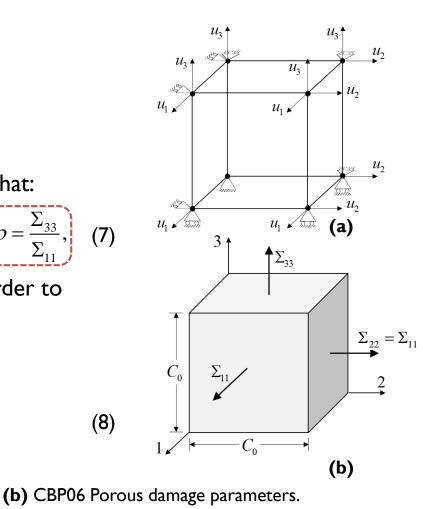
(a) Projections on the π -plane;

UNIVERSIDADE D COIMBRA

Evaluation of the response of the CPB06 Porous model using elementary numerical tests

- a) Numerical model;
- b) Numerical results:
 - Axisymmetric tensile loadings (effect of J_3^{Σ});
 - Discussion

Numerical model


- Single tri-linear hexahedral **finite element**:
 - Initial cubic geometry with width C_0 ;
 - Symmetric boundary conditions applied;
- **Tensile axisymmetric loading** applied such that:

$$\boldsymbol{\Sigma} = \boldsymbol{\Sigma}_{11} \left(\mathbf{e}_1 \otimes \mathbf{e}_1 + \mathbf{e}_2 \otimes \mathbf{e}_2 \right) + \boldsymbol{\Sigma}_{33} \left(\mathbf{e}_3 \otimes \mathbf{e}_3 \right), \text{ with } \left(\boldsymbol{\rho} = \frac{\boldsymbol{\Sigma}_{33}}{\boldsymbol{\Sigma}_{11}} \right)$$

- Applied macroscopic stress is updated in order to maintain a <u>constant stress triaxiality;</u>
- Isotropic hardening according to **Swift's Law**:

$$\sigma_{\mathrm{T}} = K \left(\varepsilon_{0} + \overline{\varepsilon}_{\mathrm{M}}^{\mathrm{p}} \right)^{n}, \text{ with } \varepsilon_{0} = \left(\frac{\sigma_{0}^{\mathrm{T}}}{K} \right)^{1/n},$$

(a) Elastic and plastic properties;			
E [GPa]	v	K/σ_0^{T}	n
200	0.33	2.2	0.1

 $f_{\rm c}$

0.10

 f_0

0.01

(7)

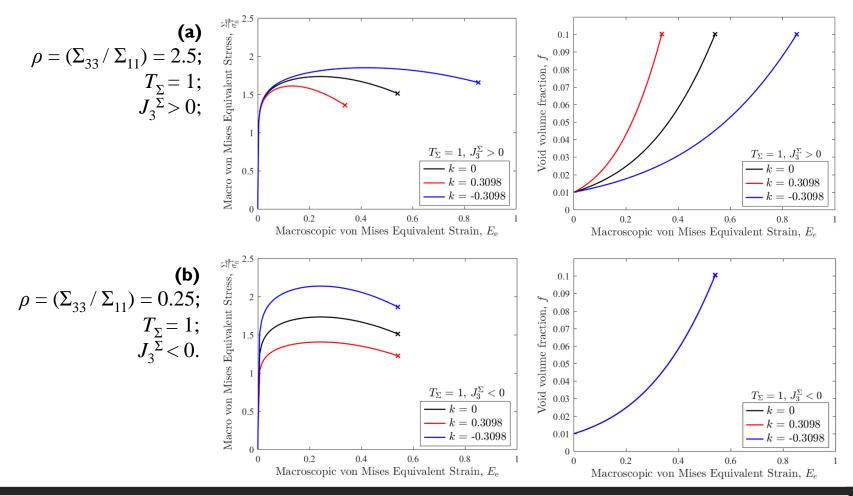
(8)

 q_3

2.25

 q_2

1.0

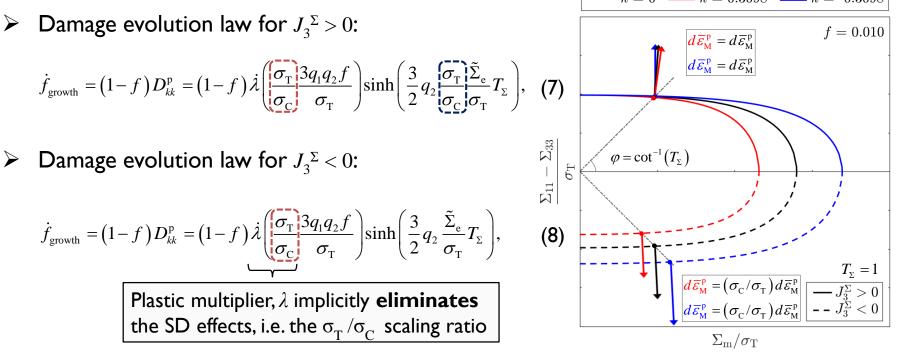

 q_1

1.5

10/14

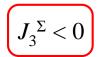
Numerical results

Axisymmetric tensile loadings with a **constant** triaxiality ratio, distinguished by the sign of J_3^{Σ} :


July 3, 2019

An assessment of a micromechanical damage model for porous solids exhibiting T-C asymmetry

11/14


Discussion

- > Yield loci on the 4th quadrant of the axisymmetric projections $(J_3^{\Sigma} < 0)$ are **homothetic transformations** of the von Mises reference curve (k = 0):
 - The normal to the surface at the intersection point with a given stress triaxiality is <u>independent of SD effects</u>;
 - The direction of the matrix plastic strain increment, $\overline{\varepsilon}_{M}^{p}$, is <u>independent of the SD</u> <u>effects</u>.

Conclusions

- > The numerical simulations for <u>axisymmetric tensile loadings</u> showed that:
 - The model distinguishes the role of the T-C asymmetry in the damage evolution;
 - As in the micromechanical studies, different ductilities are predicted depending on the displayed SD effects.
 - The model does not distinguish different damage evolutions according to the displayed SD effects;

 $J_3^{\Sigma} > 0$

• The softening regime and ductility of the materials are independent of the SD effects, which disagrees with the results in the same micromechanical studies (e.g. Alves and Cazacu, 2015).

13/14

In future work:

- Study of the <u>combined</u> effect of the T-C asymmetry and **anisotropy** on the damage evolution (Cazacu and Stewart, 2011);
- Depart from the current preliminary/<u>conceptual analysis</u> into more **practical** and real-world **applications** (simulation of standard mechanical tests and sheet metal forming operations).

Acknowledgements

The authors gratefully acknowledge the financial support of the Portuguese Foundation for Science and Technology (FCT) under the projects with reference PTDC/EMS-TEC/0702/2014 (POCI-01-0145-FEDER-016779), PTDC/EMS-TEC/6400/2014 (POCI-01-0145-FEDER-016876) and PTDC/EME-EME/30592/2017 (POCI-01-0145-FEDER-030592) and by UE/FEDER through the program COMPETE2020 under the project MATIS (CENTRO-01-0145-FEDER-000014).

UNIÃO EUROPEIA

Fundo Europeu le Desenvolvimento Regional

Thank you

mild ways

João Paulo Martins Brito joao.brito@uc.pt

Congress on Numerical Methods in Engineering

University of Minho - Portugal July 1-3, 2019