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Introduction

Fuel cell technology

▪ Unlike traditional combustion technologies that burn fuel, fuel cells undergo a chemical process

to convert hydrogen-rich fuel into electricity
Advantages:

• Low-to-Zero Emissions

• High Efficiency

• Reliability

• Fuel Flexibility

• Energy Security

• Durability

• Scalability

• Quiet Operation
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Introduction

PEM Fuel Cells

▪ Among the most commonly used types of fuel cells are

the Proton exchange membrane (PEM) fuel cells

▪ Bipolar plates are one of the main components of the

PEM fuel cells, contributing to about 60–80% of the

stack weight and 25–45% of the stack cost

▪ A PEM fuel cell for a typical passenger car contains

about 400–500 bipolar plates
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Introduction

Bipolar plates (BPPs)

▪ Bipolar plate materials are broadly divided into

metallic (e.g. titanium, stainless steel, aluminum)

and carbon-based (e.g. graphite)

▪ BPPs can be produced by several manufacturing

techniques like forming, milling and casting

▪ The rubber pad forming process is adopted in

the manufacturing of thin stamped bipolar

plates
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Introduction

Stamped bipolar plates by rubber pad forming

▪ The main advantages are low tooling costs, mark-free surface of the workpiece and better

formability when compared to conventional press technology

▪ The wear of the rubber is an issue in large quantity manufacturing
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Introduction

Stamped bipolar plates by rubber pad forming

Disadvantages:

▪ The wear of the rubber is an issue in

large quantity manufacturing

▪ Sharp projections wear out the rubber

pad quickly

Advantages:

▪ A single rubber pad can be used with

different die shapes

▪ Better formability when compared to

conventional press technology

▪ Mark-free surface of the workpiece

▪ Low tooling costs
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Introduction

Numerical simulation of the rubber forming process

▪ Numerical simulation tools are adopted in the design and

optimization of the forming processes to reduce development

cost and time-to-market for new bipolar plates

▪ The accuracy of the numerical solutions is strongly dependent

on the numerical models (constitutive laws for the blank and

for the rubber pad) adopted in the finite element simulation
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Experimental Procedure 

Mechanical tests performed

▪ Uniaxial compression tests (loading, permanency and

unloading)

❑ 3 values of grip speed during the loading-unloading stage

(0.05 mm/s, 0.5 mm/s and 5 mm/s)

▪ Stress relaxation tests

❑ A stretch of 0.65 is kept constant for 10.000 seconds

❑ Loading stage performed with the largest grip velocity (5 mm/s)

Rubber material specimens

▪ Polyurethane (PUR) rubber with 70 Shore A of hardness

▪ Cylindrical specimens with D = 18 mm and H = 25 mm
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Experimental Procedure 

Mechanical tests performed

▪ Free vibration tests

❑ Equipment: Yerzley’s oscillograph

❑ A mass is placed on one side of the beam at a distance

Lm of the fulcrum while the specimen is placed on the

opposite side at a distance Ls of the fulcrum

❑ The unbalanced arms of the beam produce a pre-

compression force on the specimen

❑ An external perturbation applied to the beam makes the

system oscillate

❑ Displacement and force values are recorded
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Numerical Model 

Hyper-viscoelastic constitutive model

▪ The hyperelasticity is described by the

Mooney-Rivlin model (2 parameters – C10

and C01)

▪ The viscoelasticity is described by m

Maxwell elements

▪ Each Maxwell element is defined by 2

parameters:

❑ Relaxation time (τ)

❑

τ1 τ2 τm

μ1μ0 μ2 μm

0
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Rheological spring-dashpot model

(Generalized Maxwell Model)
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Numerical Model 

Uniaxial compression stress state

▪ Assumptions:

❑ Incompressible material

❑ Isotropic material

▪ 2nd Piola-Kirchhoff stress from hyperelasticity:

▪ 2nd Piola-Kirchhoff stress from viscoelasticity:
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Calibration of Material Parameters 

Least Squares fitting

▪ Minimization of the difference between numerical and experimental PK1 stress, considering all tests

simultaneously (3 uniaxial compression tests + 1 stress relaxation test + 1 free vibration test)

➢ Hyper-viscoelastic model (2 + 2 x 4 = 10 material parameters)

C10 C01 ak1 ak2 ak3 ak4 τ1 τ2 τ3 τ4

1,19882 0 10-5 0,069804 0,64690 0,09290 12763,88 9,38 0,00437 726,02
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Experimental and Numerical Stress

Uniaxial compression tests

▪ Loading and unloading at 0.05 mm/s and 5 mm/s grip speed
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Experimental and Numerical Stress

Stress relaxation test

▪ Constant value of stretch of 0.65

▪ Relaxation of 10 000 s
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Experimental and Numerical Stress

Free vibration test

▪ Evolution of PK1 stress for approximately 2 seconds

▪ The mean value of the curve represents the stress imposed by the pre-compression force

-0,5

-0,45

-0,4

-0,35

-0,3

-0,25

0 0,4 0,8 1,2 1,6 2
P

K
1

 [
M

P
a

]

Time [s]

Experimental
Calibration



C.M. Andrade (carlos.andrade@uc.pt) DCE 2019 | FEUP

16
Conclusions 

▪ Mechanical characterization of a polyurethane (PUR) rubber

▪ The identified material parameters can predict very accurately the mechanical behavior of the

polyurethane in all tests performed

▪ This model will be applied in the numerical simulation of rubber pad forming of thin BPPs

▪ Calibration of material parameters considers only the uniaxial stress state, but several strain paths

arise in the rubber pad forming process

▪ Further mechanical tests are required for a more complete characterization
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