

Mechanical characterization of a polyurethane using a hyper-viscoelastic constitutive model

C.M. Andrade¹ • J.R Barros¹ • D.M. Neto¹ • A. Ramalho¹ • M.C. Oliveira¹ • L.F. Menezes¹ • J.L. Alves²

¹CEMMPRE, Department of Mechanical Engineering, University of Coimbra, Portugal ²CMEMS, Department of Mechanical Engineering, University of Minho, Portugal

DCE 2019 3rd Doctoral Congress in Engineering 27th-28th June 2019 FEUP

Fuel cell technology

 Unlike traditional combustion technologies that burn fuel, fuel cells undergo a chemical process to convert hydrogen-rich fuel into electricity

Advantages:

- Low-to-Zero Emissions
- High Efficiency
- Reliability
- Fuel Flexibility
- Energy Security
- Durability
- Scalability
- Quiet Operation

DCE 2019 | FEUP

Introduction

PEM Fuel Cells

 Among the most commonly used types of fuel cells are the Proton exchange membrane (PEM) fuel cells

 Bipolar plates are one of the main components of the PEM fuel cells, contributing to about 60–80% of the stack weight and 25–45% of the stack cost

 A PEM fuel cell for a typical passenger car contains about 400–500 bipolar plates

Bipolar plates (BPPs)

- Bipolar plate materials are broadly divided into metallic (e.g. titanium, stainless steel, aluminum) and carbon-based (e.g. graphite)
- BPPs can be produced by several manufacturing techniques like forming, milling and casting
- The rubber pad forming process is adopted in the manufacturing of thin stamped bipolar plates

Stamped bipolar plates by rubber pad forming

- The main advantages are low tooling costs, mark-free surface of the workpiece and better formability when compared to conventional press technology
- The wear of the rubber is an issue in large quantity manufacturing

Stamped bipolar plates by rubber pad forming

Advantages:

- A single rubber pad can be used with different die shapes
- Better formability when compared to conventional press technology
- Mark-free surface of the workpiece
- Low tooling costs

Disadvantages:

- The wear of the rubber is an issue in large quantity manufacturing
- Sharp projections wear out the rubber

Numerical simulation of the rubber forming process

- Numerical simulation tools are adopted in the design and optimization of the forming processes to reduce development cost and time-to-market for new bipolar plates
- The accuracy of the numerical solutions is strongly dependent on the numerical models (constitutive laws for the blank and for the rubber pad) adopted in the finite element simulation

Rubber material specimens

- Polyurethane (PUR) rubber with 70 Shore A of hardness
- Cylindrical specimens with D = 18 mm and H = 25 mm

Mechanical tests performed

- Uniaxial compression tests (loading, permanency and unloading)
 - □ 3 values of **grip speed** during the loading-unloading stage (0.05 mm/s, 0.5 mm/s and 5 mm/s)
- Stress relaxation tests

□ A stretch of 0.65 is kept constant for 10.000 seconds

□ Loading stage performed with the largest grip velocity (5 mm/s)

Mechanical tests performed

Free vibration tests

Equipment: Yerzley's oscillograph

A mass is placed on one side of the beam at a distance L_m of the fulcrum while the specimen is placed on the opposite side at a distance L_s of the fulcrum

- ❑ The unbalanced arms of the beam produce a precompression force on the specimen
- An external perturbation applied to the beam makes the system oscillate

□ Displacement and force values are recorded

Hyper-viscoelastic constitutive model

- The hyperelasticity is described by the Mooney-Rivlin model (2 parameters – C₁₀ and C₀₁)
- The viscoelasticity is described by m Maxwell elements
- Each Maxwell element is defined by 2 parameters:
 - \Box Relaxation time (τ)

$$\Box \ ak_i = \frac{\mu_i}{\mu_0}$$

11

Uniaxial compression stress state

- Assumptions:
 - □ Incompressible material
 - □ Isotropic material

 $\Pi_{\text{Total}} = \Pi_{\text{MR}} + \sum_{i=1}^{m} \Pi_{\text{MW}_{i}}$

2nd Piola-Kirchhoff stress from hyperelasticity:

 $\Pi_{\rm MR} = 2(\lambda^{-1} - \lambda^{-4})(C_{10}\lambda + C_{01})$

2nd Piola-Kirchhoff stress from viscoelasticity:

$$\Pi_{\text{MW}_{i}}^{n+1} = \exp\left(-\frac{\Delta t}{\tau_{i}}\right)\Pi_{\text{MW}_{i}}^{n} + \frac{ak_{i}\tau_{i}}{\Delta t}\left[1 - \exp\left(-\frac{\Delta t}{\tau_{i}}\right)\right](\Pi_{\text{MR}}^{n+1} - \Pi_{\text{MR}}^{n})$$

Least Squares fitting

- Minimization of the difference between numerical and experimental PK1 stress, considering all tests simultaneously (3 uniaxial compression tests + 1 stress relaxation test + 1 free vibration test)
 - Hyper-viscoelastic model (2 + 2 x 4 = 10 material parameters)

C ₁₀	C ₀₁	ak₁	ak ₂	ak ₃	ak ₄	τ ₁	τ2	τ ₃	τ ₄
1,19882	0	10 ⁻⁵	0,069804	0,64690	0,09290	12763,88	9,38	0,00437	726,02

Uniaxial compression tests

Loading and unloading at 0.05 mm/s and 5 mm/s grip speed

Stress relaxation test

- Constant value of stretch of 0.65
- Relaxation of 10 000 s

Free vibration test

- Evolution of PK1 stress for approximately 2 seconds
- The mean value of the curve represents the stress imposed by the pre-compression force

- Mechanical characterization of a polyurethane (PUR) rubber
- The identified material parameters can predict very accurately the mechanical behavior of the polyurethane in all tests performed
- This model will be applied in the numerical simulation of rubber pad forming of thin BPPs
- Calibration of material parameters considers only the uniaxial stress state, but several strain paths arise in the rubber pad forming process
- Further mechanical tests are required for a more complete characterization

This research work was sponsored by national funds from the Portuguese Foundation for Science and Technology (FCT) under the projects with reference PTDC/EMS-TEC/0702/2014 (POCI-01-0145-FEDER-016779) and PTDC/EMS-TEC/6400/2014 (POCI-01-0145-FEDER-016876) by UE/FEDER through the program COMPETE 2020

Thank you for your attention!

18