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Introduction

Vehicles utilization according with the type of fuel 
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Introduction

Hydrogen Electric Vehicles

▪ Proton exchange membrane (PEM) fuel cells

are electrochemical devices that convert the

chemical energy of a fuel (hydrogen) directly to

electrical energy

▪ Bipolar plates are one of the main components of

the PEM fuel cells, contributing to about 60–80%

of the stack weight and 25–45% of the stack cost
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Introduction

PEM Fuel Cells

▪ Fuel cell is comprised of a series arrangement of “repeating cell units” stacked together

▪ A PEM fuel cell for a typical passenger car contains about 400–500 bipolar plates
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Introduction

Bipolar plates

▪ Bipolar plate materials are broadly divided into

metallic (e.g. titanium, stainless steel, aluminum)

and carbon-based (e.g. graphite)

▪ Several manufacturing techniques are used to

produce metallic bipolar plates (forming, milling

and casting)

▪ The rubber pad forming process is adopted in

the manufacturing of thin stamped bipolar

plates
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Introduction

Stamped bipolar plates by rubber pad forming

▪ The main advantages are low tooling costs, mark-free surface of the workpiece and better

formability when compared to conventional press technology

▪ The wear of the rubber is an issue in large quantity manufacturing
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Introduction

Numerical simulation of the rubber forming process

▪ Numerical simulation tools are adopted in the design and

optimization of the forming processes to reduce development

cost and time-to-market for new bipolar plates

▪ The accuracy of the numerical solutions is strongly dependent

on the numerical models (constitutive laws for the blank and

for the rubber pad) adopted in the finite element simulation
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Introduction

Visco-hyperelastic constitutive model

▪ The rate-dependent behavior of the

rubber pad at large deformations is

modelled by a visco-hyperelastic

constitutive model

▪ The main objective of this study is to

evaluate the importance of the

viscous effect on the global behavior

of the rubber pad during the forming

process
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Experimental Procedure 

Rubber materials studied

▪ 2 different polyurethane (PUR) rubbers

with different values of hardness:

❑ 70 Shore A (yellow specimen)

❑ 95 Shore A (orange specimen)

▪ Cylindrical specimens with 18 mm of

diameter and 25 mm of height
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Experimental Procedure 

Mechanical tests performed

▪ Uniaxial compression tests comprising loading,

permanency and unloading

❑ 3 values of grip speed during the loading-unloading

stage (0.05 mm/s, 0.5 mm/s and 5 mm/s)

▪ Stress relaxation tests

❑ A stretch of 0.65 is kept constant for 10.000 seconds

❑ Loading stage performed with the largest grip

velocity (5 mm/s)
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Numerical Model 

Visco-hyperelastic constitutive model

▪ The hyperelasticity is described by

the Mooney-Rivlin model (2 parameters

in the strain energy density function)

▪ The viscoelasticity is described by m

Maxwell elements

▪ Each Maxwell element is defined by 2

parameters:

❑ Relaxation time (τ)

❑

τ1 τ2 τm

μ1μ0 μ2 μm

0

i
iak




=

Rheological spring-dashpot model
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Numerical Model 

Uniaxial compression stress state

▪ Assumptions:

❑ Incompressible material

❑ Isotropic material

▪ 2nd Piola-Kirchhoff stress from hyperelasticity:

▪ 2nd Piola-Kirchhoff stress from viscoelasticity:
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Calibration of Material Parameters 

Least Squares fitting

▪ Minimization of the difference between numerical and experimental stress, considering all tests

simultaneously (3 uniaxial compression tests + 1 stress relaxation test)

➢ Visco-hyperelastic model (2+2x2=6 material parameters)

➢ Hyperelastic model (2 material parameters)

C10 C01 ak1 ak2 τ1 τ2

PUR70 visco-hyperelastic model 1.196 0.000 0.0956 0.0719 634.9 10.01

PUR70 hyperelastic model 1.317 0.000 - - - -

PUR95 visco-hyperelastic model 3.485 0.000 0.1945 1.5170 19.25 0.090

PUR95 hyperelastic model 3.776 0.000 - - - -
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Experimental and Numerical Stress

Uniaxial compression tests

▪ Loading and unloading at 0.5 mm/s grip

speed

▪ Influence of the rubber hardness on the

stress values

▪ The largest difference between loading

and unloading curve occurs for the

PUR95 (more pronounced viscous

effect) -16
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Experimental and Numerical Stress

Stress relaxation tests

▪ Constant value of stretch = 0.65

▪ Improved prediction of the stress

relaxation using the visco-hyperelastic

constitutive model (PUR70)

▪ Regarding the PUR95, the experimental

stress relaxation is underestimated by

the numerical model (consequence of

the relaxation time of each dashpot

defining the Maxwell elements)
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Conclusions 

▪ Mechanical characterization of two polyurethane (PUR) rubbers

▪ The uniaxial loading/unloading shows that the viscous effect is more significant in the polyurethane

with higher hardness value (PUR95)

▪ The adoption of the visco-hyperelastic model improves accuracy of the predicted stress

▪ Calibration of material parameters considers only the uniaxial stress state, but several strain paths

arise in the rubber pad forming process
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Different Strain Paths 

Numerical prediction of stress evolution

▪ Uniaxial tension; Equi-biaxial tension; Planar tension
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Free Vibration Tests 

Yerzley’s oscillograph

▪ A mass is placed on one arm of the beam at a distance

Lm of the fulcrum

▪ The specimen is placed on the opposite side of the

added mass at a distance Lp of the fulcrum

▪ The unbalanced arms of the beam produce a pre-

compression force on the specimen

▪ An external perturbation applied to the beam makes

the system oscillate

▪ Displacement and force values are recorded
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Free Vibration Tests 

Yerzley’s oscillograph
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