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Introduction

Vehicles utilization according with the type of fuel
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Introduction

Hydrogen Electric Vehicles

= Proton exchange membrane (PEM) fuel cells {» 01
are electrochemical devices that convert the ) %
chemical energy of a fuel (hydrogen) directly to H, — & $ 0,
electrical energy §
= Bipolar plates are one of the main components of ﬁ
the PEM fuel cells, contributing to about 60-80% Excess -
s, = Lo

of the stack weight and 25-45% of the stack cost
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Introduction n

PEM Fuel Cells

» Fuel cell is comprised of a series arrangement of “repeating cell units” stacked together

= A PEM fuel cell for a typical passenger car contains about 400-500 bipolar plates
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Introduction ﬂ

Bipolar plates
= Bipolar plate materials are broadly divided into
metallic (e.g. titanium, stainless steel, aluminum)

and carbon-based (e.g. graphite)

» Several manufacturing techniques are used to
produce metallic bipolar plates (forming, milling

and casting)

= The rubber pad forming process is adopted in
the manufacturing of thin stamped bipolar

plates
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Introduction

Stamped bipolar plates by rubber pad forming
» The main advantages are low tooling costs, mark-free surface of the workpiece and better

formablility when compared to conventional press technology

= The wear of the rubber is an issue in large quantity manufacturing
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Introduction

Numerical simulation of the rubber forming process

= Numerical simulation tools are adopted in the design and

optimization of the forming processes to reduce development | -rieidde
cost and time-to-market for new bipolar plates
blank
= The accuracy of the numerical solutions is strongly dependent /’.,:Ks:‘ -

“7‘"%? P rubber

on the numerical models (constitutive laws for the blank and

for the rubber pad) adopted in the finite element simulation
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Introduction n

Visco-hyperelastic constitutive model 0
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Experimental Procedure o

Rubber materials studied
= 2 different polyurethane (PUR) rubbers

with different values of hardness:

0 70 Shore A (yellow specimen)

0 95 Shore A (orange specimen)

= Cylindrical specimens with 18 mm of

diameter and 25 mm of height
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Experimental Procedure 10

Mechanical tests performed
= Uniaxial compression tests comprising loading,

permanency and unloading
O 3 values of grip speed during the loading-unloading

stage (0.05 mm/s, 0.5 mm/s and 5 mm/s)

= Stress relaxation tests
O A stretch of 0.65 is kept constant for 10.000 seconds

O Loading stage performed with the largest grip

velocity (5 mm/s)
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Numerical Model

Visco-hyperelastic constitutive model

= The hyperelasticity is described by 1‘
the Mooney-Rivlin model (2 parameters - - —

In the strain energy density function)

* The viscoelasticity is described by m

Maxwell elements

o Mo M1 M M
= Each Maxwell element is defined by 2
parameters:
0 Relaxation time (1)
0 aki :ﬂ —_— ‘1, sssasssnsnsannns .

Ky
Rheological spring-dashpot model
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Numerical Model

Uniaxial compression stress state
= Assumptions: 01

U Incompressible material

=
I

=
Ny

Q Isotropic material —>
A, =1\
Stress Strain

= 2" Pjola-Kirchhoff stress from hyperelasticity: N

Pur = 2(/1_1 - /1_4)(C1oﬂ* + C01)

m

= 2nd Pijola-Kirchhoff stress from viscoelasticity: > Proa =Pur + ;PMWi

P N+l _ exp£_§ijW.n n akiz, {1_ eXpK_AtJ:I(PMRnﬂ P,

' T ! At T
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Calibration of Material Parameters m

Least Squares fitting
= Minimization of the difference between numerical and experimental stress, considering all tests

simultaneously (3 uniaxial compression tests + 1 stress relaxation test)

» Visco-hyperelastic model (2+2x2=6 material parameters)

» Hyperelastic model (2 material parameters)

_———___
0000 00956 00719 6349  10.01

PUR70 hyperelastic model : 0.000 - - - -

PUR95 visco-hyperelastic model : 0.000 0.1945 1.5170 19.25 0.090
PUR95 hyperelastic model : 0.000 - - - -

D.M. Neto (diogo.neto@dem.uc.pt) ESAFORM 2019 | Vitoria-Gasteiz | Spain



Experimental and Numerical Stress

Uniaxial compression tests

» Loading and unloading at 0.5 mm/s grip 0
speed 2 e
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. 12 f e .
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Experimental and Numerical Stress 15

Stress relaxation tests

= Constant value of stretch = 0.65 -2

4 e
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o
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-12
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-14
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Conclusions m

» Mechanical characterization of two polyurethane (PUR) rubbers

= The uniaxial loading/unloading shows that the viscous effect is more significant in the polyurethane

with higher hardness value (PUR95)
= The adoption of the visco-hyperelastic model improves accuracy of the predicted stress

= Calibration of material parameters considers only the uniaxial stress state, but several strain paths

arise in the rubber pad forming process
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Different Strain Paths m

Numerical prediction of stress evolution

= Uniaxial tension; Equi-biaxial tension; Planar tension
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Free Vibration Tests m

Yerzley’s oscillograph
= A mass is placed on one arm of the beam at a distance

L, of the fulcrum

= The specimen is placed on the opposite side of the

added mass at a distance Lp of the fulcrum

» The unbalanced arms of the beam produce a pre-

compression force on the specimen

= An external perturbation applied to the beam makes

the system oscillate

» Displacement and force values are recorded
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Free Vibration Tests E

Yerzley’s oscillograph
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