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Abstract The main objective of this study is to calibrate the material parameters of a hyper-

viscoelastic constitutive model for two polyurethanes typically used in rubber pad forming. 

The hyperelastic behavior is described by the Mooney-Rivlin model, while the 

viscoelasticity is modelled by a series of Maxwell elements. Two different loading modes 

are considered simultaneously in the calibration process: (i) uniaxial compression and (ii) 

shear with superimposed normal compression. In order to cover different time scales of 

response, the calibrations are carried out, for each material, with two types of loading: (i) 

quasi-static and (ii) dynamic. The calibration of the material parameters is performed using 

a modified least squares method, minimizing the difference between numerical and 

experimental first Piola-Kirchhoff stresses .The results show that, in general, the numerical 

model can reproduce very well the experimental behavior of both rubbers. However, to 

achieve a good agreement between numerical and experimental results the set of calibrated 

material parameters has to be different for the quasi-static and dynamic loading. 
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1. INTRODUCTION 

Presently and considering the scenario of the European Union, road transport contributes 

to about 20% of the total emissions of carbon dioxide (main greenhouse gas). Therefore, the 

demand for new clean power technologies is imperative to significantly reduce the emission of 

pollutants and the dependence on fossil fuels [1]. Accordingly, increasing attention has been 

given to fuel cell technology in order to replace the internal combustion engines in 

transportation applications [1][2]. Among the several types of fuel cells [3], the Polymeric 

Electrolyte Membrane Fuel Cells (PEMFC) are the most promising to replace the internal 

combustion engines due to fast startup time and high power-to-weight ratio. These fuel cells 

convert the chemical energy of the fuel (hydrogen) directly and efficiently into electrical 

energy. Although this is a promising technology, some limitations are still hindering its use on 

a larger scale, namely the high manufacturing cost and the hydrogen storage difficulties. The 

bipolar plates (BPPs) are multifunctional components, which supply the reactant gases over the 

electrodes via flow channels and connect electrically the cathode and the anode, while providing 

structural support for the membrane-electrode assembly. They are one of the primary 

components of the PEMFC, comprising most of the total cost. The earlier BPPs were fabricated 

from graphite, which is chemically stable but exhibits low mechanical strength. Thus, more 

suitable and cost-effective materials have been used in the production of BPPs, namely metals 

and composites. Since the high density is an important drawback of metals, ultra-thin sheets 

have been used to produce BPPs, requiring more sophisticated forming methods than the 

conventional, such as the rubber pad forming [4][5]. 

Ultra-thin stamped BPPs obtained from the rubber pad forming process are viewed as a 

promising alternative to the traditional graphite BPPs in PEMFC [3]. The rubber pad forming 

process uses only a single rigid die, while the other die is replaced by a rubber pad (enclosed in 

a container), which improves the formability of the blank and the surface quality in comparison 

with the traditional forming process [6]. However, the forming of ultra-thin BPPs is prone to 

some forming defects, such as springback, wrinkles, thinning and fracture [7]. Among the 

several process parameters, the geometry of the forming (rigid) tool and the rubber pad are the 

most important. Indeed, the mechanical behavior of the rubber material (chemical composition 

and hardness) is crucial to produce the desired BPP shape without defects [8][9]. Nowadays, 

the design and optimization of forming processes is carried out by numerical simulation, 

allowing to reduce the product development time and the manufacturing costs. However, the 

accuracy of the numerical solutions is strongly dependent on the numerical models used in the 

finite element simulation [10]. 

The numerical simulation of the rubber pad forming process requires the modelling of the 

mechanical behavior of thin metallic sheets (elastoplastic behavior) but also of the rubber pad. 

The mechanical behavior of rubber-like materials is both elastic and viscous. Regarding the 

elastic response, it is path-independent, since the work done by the stresses during a 

deformation process is dictated only by the initial and final configurations, showing a non-linear 

stress-strain relationship, referred as hyperelastic behavior [11]. The stress-strain relationship 

in rubber-like materials is derived from a strain energy density function, where the Ogden [12], 

Mooney-Rivlin [13][14] and Yeoh [15] hyperelastic models are the most widely used. The 
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modelling of the viscoelastic behavior is significantly more complex than the hyperelastic one 

due to the rate-dependent response [16]. Indeed, the time-dependent stress-strain relationship 

in viscoelastic materials presents three important properties: stress relaxation (maintaining a 

constant strain results in decreasing the stress), creep (maintaining a constant stress results in 

an increasing strain) and hysteresis (a stress-strain phase lag) [17]. The treatment of the 

viscoelasticity using phenomenological models considers the material as a continuum and 

focuses on the curve-fitting of the mechanical behavior through experimental data. Usually, the 

constitutive relations for viscoelasticity combine the elastic component with the time-dependent 

viscous effect [18]. One of the most common ways to model the viscoelastic effect is the linear 

viscoelasticity theory, whose foundations were presented by Coleman et al. [19]. The 

mechanical modelling of the elastic and viscous effects is typically represented by rheological 

models, which consist of combinations of springs (elasticity) and dashpots (viscous 

dissipation). For linear viscoelastic response, some of the most well-known are the Maxwell, 

Kelvin-Voigt and Zener models [20]. 

Most of the numerical studies on rubber-like materials take into account only the 

hyperelastic constitutive modelling [21][22][23][24][25]. On the other hand, the calibration of 

the material parameters is usually performed based on a single loading mode, typically uniaxial 

compression/tension [26][27]. However, adopting a single loading mode in the material 

parameters calibration can lead to incorrect predictions of the material behavior for different 

loading modes, such as shear and equi-biaxial tension/compression [28]. Therefore, the 

calibration process for these material models should include simultaneously different loading 

modes, in order to describe accurately the mechanical behavior of the rubber material. The main 

objective of this study is to calibrate the material parameters of a hyper-viscoelastic constitutive 

model for two polyurethane rubbers, which are typically used in rubber pad forming. Two 

loading modes are considered simultaneously in the calibration process: (i) uniaxial 

compression and (ii) shear with superimposed normal compression. The hyperelastic behavior 

is described by the Mooney-Rivlin model while the viscoelasticity is modelled by a series of 

Maxwell elements. Moreover, in order to cover different time scales of response, both quasi-

static and dynamic loadings are used in the calibration of each rubber. The calibration of the 

material parameters is performed using a modified least squares method, minimizing the 

difference between numerical and experimental stress values. 

The present paper is divided in five sections. Section 2 is dedicated to the mathematical 

description of the hyperelasticity, viscoelasticity and total numerical stress calculation. The 

strain measures associated to each loading mode are defined and the numerical stresses are 

derived considering material isotropy and incompressibility. Section 3 describes the materials 

and specimen geometries used in the mechanical tests and the experimental procedure followed 

for each loading mode, for both types of loading. It is also presented the objective function, 

whose minimization allows to determine the material parameters, as well as several important 

aspects to take into account regarding the calibration process. In Section 4 the experimental and 

numerical results are presented and discussed. The mechanical response of both rubbers is 

compared and their strain-rate sensitivity is assessed. The numerical curves obtained from the 

calibration processes are compared with the corresponding experimental evolutions, allowing 

to evaluate the capability of the hyper-viscoelastic model to capture both rubber’s behavior. 
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Finally, the concluding remarks of this study are presented in Section 5. 

2. HYPER-VISCOELASTIC CONSTITUTIVE MODELLING 

The mechanical behavior of the two polyurethane rubbers is described by a 

rheological analogy known in the literature as generalized Maxwell model (see Figure 1). 

This model is defined by an elastic spring (hyperelastic behavior) in parallel with N 

Maxwell elements (viscoelasticity), where each Maxwell element is composed by an elastic 

spring and a viscous Newton-element in series. 

 

 

Figure 1. Generalized Maxwell model. 

2.1. Hyperelasticity 

Materials that recover totally their initial geometry after the deformation is removed are 

known as elastic. The finite deformation of a material body is usually described using the 

deformation gradient tensor ,F  which establishes a correspondence between the position of the 

material points in the reference configuration ( X ) and their position in the current configuration 

( x ): 

 





x
F

X
. (1) 

This tensor can be decomposed, using the polar decomposition theorem, into a product of two 

second-order tensors: 

 , (2) 

where R  is a proper orthogonal tensor, representing a rotation, and U  is the right stretch tensor. 

It is also useful to introduce the right Cauchy–Green deformation tensor, given by: 

 
T 2 C F F U , (3) 

where the eigenvalues of U  are the principal stretches i , with i =1,2,3 (the eigenvalues of C  

are the squares of the principal stretches). The invariants of C  are defined in the following 

manner: 

 
2 2 2

1 1 2 3( )I tr      C , (4) 

F RU
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2 2 2 2 2 2 2

2 1 1 2 2 3 3 1

1
( : )

2
I I          C C , (5) 

 3 1 2 3det( )I    C . (6) 

For hyperelastic materials, different stress measures can be obtained by taking the 

derivative of the elastic potential with respect to an appropriate deformation measure. The 

second Piola-Kirchhoff stress tensor S  is determined by differentiating the elastic potential,  

 , with respect to C : 

 2





S
C

. (7) 

If the material is assumed isotropic, the elastic potential can be expressed only as a function of 

the invariants of C  and the reference configuration: 

 
1 2 3( , ) ( , , , )I I I C X X . (8) 

Considering that the material is incompressible or nearly incompressible, the deformation 

gradient tensor can be multiplicatively separated into a volumetric component volF  and a 

deviatoric contribution F : 

 
1/3 1/3

vol ( )( )J J  F F F I F , (9) 

where det( )J  F  and I  is the second-order identity tensor. The same decomposition can be 

applied to C  in order to obtain the deviatoric right Cauchy-Green deformation tensor C : 

 
2/3J C C . (10) 

The invariants of C  are related to the invariants of C  by the following equations: 

 

2

3
1 1I J I



 , (11) 

 

4

3
2 2I J I



 , (12) 

 3 det( ) 1I  F . (13) 

According to [11], the distortional (or isochoric) component of the elastic potential   is given 

by: 

 ( ) ( ) C C . (14) 

Therefore, for homogeneous solids with nonlinear elastic behavior, the second Piola-Kirchhoff 

stress can be expressed by the sum of an isochoric component, 
isoS , and a volumetric 

component, volS , such as: 
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vol

iso vol 2 : 2
J

J

  
   

  

C
S S S

C CC
, (15) 

where vol  is the volumetric component of the elastic potential. Considering the material 

incompressibility condition (the volume does not change during the deformation) the second 

Piola-Kirchhoff stress is given by: 

 
12 p 

 


S C
C

, (16) 

where p  represents the Lagrange multiplier (scalar), which enforces the incompressibility 

condition. Therefore, the second Piola-Kirchhoff stress tensor for hyperelastic isotropic and 

incompressible materials is expressed by: 

 
11 2

1 2

2
I I

p
I I

   
   

    
S C

C C
, (17) 

with 

 
1




I
I

C
, (18) 

 
2

1


 



I
I I C

C
. (19) 

In this study, the hyperelastic response of the rubbers is described by the Mooney-Rivlin 

strain energy density function with two parameters, whose deviatoric strain energy density is 

given by: 

 
MR 10 1 01 2( ) ( 3) ( 3)C I C I    C , (20) 

where 
10C  and 

01C  are material parameters. Therefore, considering this model, the partial 

derivatives of the strain energy density with respect to the first and second invariants are simply 

the parameters 
10C  and 

01C , respectively. Thus, the second Piola-Kirchhoff stress tensor is 

given by: 

   1

10 01 12 ( )C C I p    S I I C C . (21) 

2.2. Viscoelasticity 

In order to capture the time-effect dependency of rubber-like materials it is necessary to 

introduce a viscous effect in the constitutive model. Representing the viscoelastic material 

response with the linear viscoelasticity theory, a hereditary integral can be used to describe the 

evolution of the stress with time [29]. Consider the stress ( ) i t , at time t, due to the application 

of a strain increment  i
, at a time 

is  previous to t. The stress created by the strain history up 

to time t is given by [30]: 
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 ( ) ( )   i i it E t s , (22) 

where E is the elastic modulus. Following Boltzmann’s superposition principle, that states that 

the effects of sequential variations of deformation are additive, the total stress can be expressed 

as follows: 

 

1 1

( ) ( ) ( )  
 

    
M M

i i i

i i

t t E t s , (23) 

As integrals are summing operations, for a linear isotropic viscoelastic body exerting uniaxial 

stress ( ˆ( ) t ), the constitutive equation that relates the strain responses can be represented by 

the hereditary integral [31]: 

 
0

ˆ( )ˆˆ ( ) ( )
t s

t t s ds
s





  

 , (24) 

where ˆ ( )t s   is a relaxation function given by: 

 0

1

ˆ ( ) exp
N

j

j j

t s
t s  



 
      

 
 , (25) 

where N is the number of Maxwell elements (see Figure 1), 
0  denotes the time-independent 

elastic part of the deformation, 
j  is the constant of the jth Maxwell elastic spring and 

j  is 

the dashpot relaxation time of the jth Maxwell element. Since ˆ( ) t  is a causal function, the 

lower terminals in Eq. (24) are set at t = 0 [32]. 

Following the procedure adopted in [31], splitting the integral into an elastic and a 

viscoelastic contribution, gives: 

 0

1

ˆˆ ˆ( ) ( ) ( )
N

j

j

t t h t 


  , (26) 

with 

 
0

ˆ( )ˆ ( ) exp
t

j j

j

t s s
h t ak ds

s





  
     
 , (27) 

where 
0 i iak  denotes the ratio between the constant of the Maxwell elastic spring and the 

time-independent elastic part of the deformation. Further developments allow to write Eq. (27) 

incrementally, making it able to be implemented numerically: 

  1 1

0 0exp 1 exp
j jn n n n

j j

j j

akt t
h h

t


 

 

 
     

                  

, (28) 

where t  represents the time increment, 0  the elastic stress and the superscript n denotes 

the current increment. Rearranging equation (28), it is possible to express the stress in the ith 
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Maxwell element at the increment n+1 in terms of the second Piola-Kirchhoff stress in the 

following form: 

  1 1

MW MW MR MRexp 1 exp
i i

n n n ni i

i i

akt t
S S S S

t



 

 
     

         
    

, (29) 

The total second Piola-Kirchhoff stress is given by the sum of the hyperelastic stress and 

the viscoelastic stress of each Maxwell element: 

 Total MR MW

1

  i

N

i

S S S . (30) 

2.3. Loading modes 

The mechanical tests adopted to calibrate the material parameters of the hyper-

viscoelastic constitutive model lead to different stress states. Accordingly, two different loading 

modes were considered in the calibration: (i) uniaxial compression and (ii) shear with 

superimposed normal compression. 

Assuming the material incompressibility condition, the deformation gradient for the 

uniaxial compression stress state (along the yy direction) takes the following form: 

 

1/2

1/2

0 0

0 0

0 0











 
 

  
 
 

F , (31) 

where   denotes the stretch in the loading direction (ratio between final and initial specimen 

height). The right Cauchy–Green deformation tensor and its inverse are thus given by: 

 

1

2

1

0 0

0 0

0 0











 
 

  
 
 

C ; 
1 2

0 0

0 0

0 0







 

 
 


 
  

C . (32) 

Recalling Eq. (21) and taking into account Eq. (30), the second Piola-Kirchhoff stress tensor 

for the uniaxial stress state is given by: 

2 1

10 01

1 2

10 01

2 1

10 01

2 2 ( ) 0 0

0 2 4 0

0 0 2 2 ( )

  

 

  



 



   
 

   
    

C C p

C C p

C C p

S . (33) 

But, according to the test stress state, only 
22 0S . Thus, p  can be determined by imposing 

11 33 0 S S : 

 
1 2

10 012 2 ( )     p C C . (34) 
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The hyperelastic second Piola-Kirchhoff stress in the loading direction is thus given by: 

 
1 3 4 1 4

22 10 01 10 01 10 012 2 2 2 2( )( )               S C C C C C C . (35) 

Considering the shear stress under superimposed normal compression stress, the arising 

stress state is multiaxial. Assuming that the shear occurs in the xy plane and the compression in 

the yy direction, the deformation gradient takes the following form (assuming incompressibility 

conditions): 

 

1/2

1/2

0

0 0

0 0

 









 
 

  
 
 

F , (36) 

where   is the stretch in the direction of compression and   represents the shear parameter, 
determined by normalizing the amount of shear (total shear displacement in the direction of the 
xx axis) by the height of the tested specimen. The right Cauchy–Green deformation tensor and 
its inverse are given by: 

 

1 1/2

1/2 2 2

1

0

( 1) 0

0 0

  

   







 
 

  
 
 

C ; 

2 1/2

1 1/2 2

( 1) 0

0

0 0

   

  





  

  
 

  
 
 

C . (37) 

The hyperelastic second Piola-Kirchhoff stress tensor for this loading mode is given by: 

1 2 1/2 1/2

10 01 1 01

1/2 1/2 2 2 2

01 10 01 1

1

10 01 1

2( ( )) ( 1) 2 0

2 2[ ( ( 1))] 0

0 0 2( ( ))

C C I p C p

C p C C I p

C C I p

      

      

 

 

 



      
 

       
    

S . (38) 

According to the test stress state, the Lagrange multiplier can be determined by imposing 

33 0S  , giving: 

 
1 2

10 01 1 012 ( ) 2    p C C I C . (39) 

Thus, the hyperelastic in-plane shear component of the second Piola-Kirchhoff stress is given 

by the following expression: 

 
1/2 1 2 1/2

12 01 10 01 1 012 2 ( ) 2             S C C C I C , (40) 

and the hyperelastic compression component of the second Piola-Kirchhoff stress is given by: 

 
2 2 1 2 2

22 10 01 1 10 01 1 012[ ( ( 1))] 2 ( ) 2              S C C I C C I C , (41) 

where the first invariant of the right Cauchy-Green deformation tensor for this loading mode is 

described as follows: 
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2 2 1

1 ( 1) 2     I . (42) 

3. EXPERIMENTAL TESTS 

3.1. Materials and specimen preparation 

Two different polyurethane (PUR) rubbers are analyzed in this study. The rubbers present 

different values of hardness, namely 70 and 95 Shore A. Therefore, hereinafter they will be 

referred as PUR70 and PUR95. The materials were supplied by Norlene in rod format, 

presenting 20 mm and 18 mm of nominal diameter for PUR70 and PUR95, respectively. 

All the specimens used in this study were obtained from the cylindrical rod. However, 

different specimen geometries are considered for each mechanical test in order to ensure 

homogeneous deformation and the desired stress states (see Figure 2). Regarding the uniaxial 

compression tests, the height (H) of the specimen is approximately 1.5 times its diameter (D) 

to reduce the barreling effect [33]. In this case, the PUR70 specimen was machined to obtain a 

diameter similar to the one of the PUR95. For the shear test with superimposed normal 

compression, the specimen is a cylindrical disk, where the thickness is approximately 25% of 

the diameter in order to increase the ratio between shear stresses and normal bending stresses 

as much as possible. The effective dimensions of the tested specimens of the PUR70 and PUR95 

for both loading modes are listed in Table 1. 

 

  
(a) (b) 

Figure 2. PUR70 (yellow) and PUR95 (orange) specimens for: (a) Uniaxial compression test; (b) Shear 

with superimposed normal compression test. 

 
 H [mm] D [mm] 

PUR70 
Uniaxial compression 24.4 18.7 

Shear + normal compression 4.8 20.38 

PUR95 
Uniaxial compression 25.4 18.28 

Shear + normal compression 3.95 18.38 

Table 1. Effective dimensions of the tested specimens of the PUR70 and PUR95 for both loading modes 

and types of loading. 

3.2. Experimental procedure 

The experimental tests carried out in the present study can be divided into two categories: 

(i) quasi-static loading and (ii) dynamic loading. All quasi-static tests were conducted on a dual 
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column electromechanical universal testing machine (Shimadzu) equipped with a 100 kN load 

cell (±0.5% accuracy). The load and the crosshead displacement were recorded during the tests, 

allowing to evaluate the evolution of the stress and the deformation. Although this procedure is 

not the most precise, the instrumentation of strain gauges would be extremely difficult, 

particularly for the shear with superimposed normal compression test, due to the reduced 

dimensions of the specimens and the complexity of the assembly (shown in Section 3.2.2). The 

geometry of the assembly also makes the use of optical strain measurement techniques almost 

impossible, since there is a limited visibility of the specimens. In the uniaxial compression test, 

the error committed by using the crosshead displacement is not as significant, since the contact 

interfaces are lubricated and the strain applied is uniform through the specimen’s height. For 

the quasi-static loading, after the loading phase, a constant deformation period is imposed to 

evaluate the viscoelastic response of the polyurethanes and their characteristic stress relaxation. 

In the relaxation period of the shear with superimposed normal compression test, the 

experimental data points were acquired at a rate of 1 point per second. Regarding the relaxation 

period of the uniaxial compression test, the acquisition rate was 5 points per second for the 

PUR95 and 1 point per second for the PUR70. 

For the experimental tests with a dynamic load application a free vibration equipment, 

known as Yerzley oscillograph, was used [34]. The displacement of the equipment’s beam and 

the load acting on the specimen were collected using a displacement sensor and a load cell. The 

experimental data points of the uniaxial compression and the shear with superimposed normal 

compression tests were acquired at a rate of 7500 and 10000 points per second, respectively. 

3.2.1. Uniaxial compression tests 

The experimental apparatus used for the uniaxial compression test under quasi-static 

loading is shown in Figure 3. In order to reduce the friction between the rubber specimens and 

the flat compression plates, glycerin was used on the contact interfaces. Hence, the uniaxial 

stress state is obtained, avoiding the barreling effect. Each uniaxial compression test is 

composed by two stages: (i) loading phase and (ii) permanency stage. The first stage provides 

the relationship between the stress and strain, while in the second stage the strain is kept 

constant during a period of time, allowing for the stress relaxation to occur. Regarding the 

imposed crosshead speed during the loading stage, it was 5 mm/s and 0.635 mm/s for the 

PUR70 and PUR95, respectively. This difference of an order of magnitude is due to the very 

distinct strain rate sensitivity of both materials, which will be explained in detail in section 4.1. 

The prescribed (maximum) stretch in the uniaxial compression was 0.65 and 0.75 for the 

PUR70 and PUR95, respectively. Regarding the period of the permanency stage, it is identical 

for both rubbers, with an imposed value of 200 seconds. 
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Figure 3. Experimental apparatus used for the uniaxial compression test under quasi-static loading. 

The experimental apparatus used for the uniaxial compression test under dynamic loading 

is based in the Yerzley oscillograph, which is shown in Figure 4. The specimen is placed on 

one side of the beam, at a known distance to the fulcrum. The masses on the opposite side of 

the beam create a pre-compression force on the specimen, easily determined by applying the 

equation of equilibrium of moments. An external perturbation is then applied to the side of the 

beam that contains the masses, making the system oscillate until all the energy is dissipated 

(free vibration test). Knowing the displacement of the beam and the dimensions of the lever 

arms, it was possible to establish the relation to determine the displacement of the specimen. 

 

 
 

(a)            (b) 

Figure 4. Equipment used for the uniaxial compression test under dynamic loading: (a) Experimental 

apparatus; (b) Schematic with real dimensions (not at scale). 

3.2.2. Shear with superimposed normal compression tests 

The experimental apparatus used for the shear with superimposed normal compression 

tests under quasi-static loading is shown in Figure 5. It was developed specifically to be 

installed in a universal testing machine. In this test, two identical rubber specimens (see Table 

1) are initially compressed between aluminum plates by tightening two bolts. The compression 

load cell

specimen

displacement sensor

masses

(5,02 kg)

fulcrum

beam

138,1 mm 

40 mm

190 mm
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is carried out by imposing a displacement of 1 mm to each rubber specimen through the exterior 

plates, i.e. 2 mm reduction of the total height of the assembly. The compression was imposed 

in approximately 100 s. After approximately 30 s, the central plate was pulled by the testing 

machine, in a direction perpendicular to the direction of the compression, creating the shear 

strain on the rubbers. The total prescribed shear displacement (amount of shear) in the loading 

stage was 0.5 mm, applied in a 10 s time frame. After that, a 200 s stress relaxation period was 

imposed (equal conditions to both materials). 

 

  

(a) (b) 

Figure 5. Equipment used for the shear with superimposed normal compression test under quasi-static 

loading: (a) Experimental apparatus; (b) Schematic. 

In order to generate a uniaxial compression stress during the compression phase, the 

interface between the rubber specimens and the aluminum plates should be frictionless. On the 

other hand, the creation of the shear stress in the specimen requires a very low slip at the contact 

interfaces when the central plate is pulled. Therefore, ethyl alcohol was used on the contact 

interfaces to reduce friction between the rubber specimens and the aluminum plates during the 

compression phase, while having close to non-lubricated interfaces during the shear loading. 

Indeed, while an alcohol film is present, a stress state close to uniaxial stress state is obtained 

in the compression phase, minimizing the barreling effect. After loading, the excess alcohol 

was removed and the remaining quickly evaporated, allowing friction to exist between the 

rubber specimens and the plates, which is essential to apply the shear load without the 

occurrence of slip. 

shear force

compression 

force

aluminum plates

steel plates

specimen
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(a) (b) 

Figure 6. Equipment used for the shear with superimposed normal compression test under dynamic loading: 

(a) Experimental apparatus; (b) Schematic. 

The experimental apparatus used for the shear with superimposed normal compression 

test under dynamic loading is shown in Figure 6. The experimental conditions are slightly 

different than the ones used with a quasi-static loading, since the shear load is applied to the 

specimens by pushing the central aluminum plate instead of pulling it. In order to avoid the 

generation of unwanted moments, an indentation was made in the top face of the central plate 

to allow for a steel sphere to be placed there without falling, guaranteeing a point contact for 

the application of the load. Similarly to the quasi-static loading, during the assembly of the 

equipment, the compression of the rubber specimens was imposed in 100 s and there was an 

interval of approximately 30 s before the application of the dynamic loading. The remaining 

test conditions are the same as indicated for the free vibration test under uniaxial compression 

(see Figure 4 (b)). 

3.3. Calibration of material parameters 

The numerical model adopted requires the knowledge of the evolution of the strain 

measures to calculate the hyperelastic component of the stress (according to Eq. (35) and 

Eq. (40)). Moreover, it also requires the time step evolution (Eq. (29)), dictated by the 

acquisition rate of the experimental tests, as the viscoelastic stress of each Maxwell element 

is calculated since the beginning of the test. The total numerical stress is then calculated and 

converted from the second to the first Piola-Kirchhoff ( P ), since only the latter has a physical 

meaning and can be measured experimentally (force in the current configuration divided by the 

area in the reference configuration). This conversion is given by: 

 P FS . (43) 

Regarding the experimental data used in the calibration of the material parameters, 

the stress-strain curves are obtained from the force and displacement evolutions, collected 

during the mechanical tests. The evolution of P  is experimentally evaluated through the 

shear force

compression 

force

aluminum plates

steel plates

specimen
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force and initial dimensions of the specimen. The evolutions of the strain measures (stretch 

and shear parameter) are evaluated through the crosshead speed and time. In the tests 

performed with a dynamic loading there is always noise present, particularly associated to 

the sensor of displacement. Despite the application of an arithmetic moving average to the 

experimental data there is always some noise in these curves, which is propagated to the 

evolutions of the strain measures and, ultimately, to the evolution of the numerical stress. 

The nonlinear least squares fitting was adopted to calibrate the material parameters, 

comparing the experimental and the numerical first Piola-Kirchhoff stress evolutions: 

 

2
( ) ( )

exp num

( )
1 1 exp,max

min 
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j jkn

i i
i j

i

P P
LSM

P
, (44) 

where n  is the number of experimental tests and 
ik  is the number of data points considered on 

each test. The subscripts “exp” and “num” denote the experimental and numerical data, 

respectively, and ( )
exp,max

iP  represents the maximum absolute value of the experimental first Piola-

Kirchhoff stress of the ith test. The number of points considered must be a compromise between 

the accurate description of the mechanical behavior and the time required to perform the 

minimization. Since the time scale arising in the quasi-static and in the dynamic tests is 

completely different, the calibration of the material parameters using both loading types 

simultaneously is not advisable, due to the reduced precision achieved in the description of the 

mechanical behavior. Therefore, two calibration processes were carried out for each 

polyurethane, i.e. considering the quasi-static and the dynamic loading. Moreover, in order to 

give equal contribution to the uniaxial compression and the shear with superimposed normal 

compression, a weight based on the number of points of each test was applied to each of the 

calibrations performed ( /  i i ik k ). The minimization of the distance between each 

numerical and experimental point requires that they are synchronized in terms of both strain 

measures and time. In the testing of rubbers under dynamic loading there is always a phase lag 

between the evolutions of force and displacement (the force and displacement are in phase for 

an ideal elastic material and are 90º out of phase for an ideal viscous material, assuming 

intermediate values for a hyper-viscoelastic material). This behavior is inherently present in the 

calibrations under dynamic loading. 

In this paper, the time-effect dependency of both rubbers is assessed through experimental 

testing of both loading modes at different strain rates. However, in the calibrations only one 

strain-rate is used for each loading mode. Although the simultaneous calibration of several 

curves corresponding to different strain-rates could be a possibility, it was not the option 

considered in this study. Four Maxwell elements were selected to be in parallel with the 

hyperelastic component, since a lower number was not enough to capture the material behavior 

accurately and a greater number would not lead to significant improvements. Thus, the 

calibration procedure for the generalized Maxwell model presented in Section 2 involves the 

determination of a total of 10 parameters, two relative to the hyperelastic component and two 

for each Maxwell element. In a general note, it is important to highlight that if the value of the 

parameter ak of a given Maxwell element is small, the effect of the relaxation time   of that 
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particular element in the numerical solution is negligible, which means that even if it changes 

several orders of magnitude it would not have impact in the objective function. 

The objective function presented in Eq. (44) was minimized using the Generalized 

Reduced Gradient (GRG) algorithm. This algorithm does not guarantee the determination of 

the global minimum of the function, since it can convergence to different local minimum, and 

is known to be sensitive to the initial solution adopted. Constraints were assigned to the lower 

limit of all parameters: for the hyperelastic parameters it was imposed {C10, C01} ≥ 0 while for 

the ones associated with the viscoelasticity it was imposed iak  ≥ 10-5 and 
i  ≥ 10-10. Several 

sets of initial parameters were tested under these conditions and the solution always converged 

to nearly the same set of final parameters in each calibration (residual differences). 

4. RESULTS AND DISCUSSION 

Due to the very distinct time scales arising in the quasi-static and dynamic loadings, 

the mechanical behaviour is modelled independently for each loading type in order to 

achieve better precision of the numerical solution. Accordingly, the calibration of the 

material parameters is carried out using: (i) the experimental data from the quasi-static 

mechanical tests and (ii) the experimental data from the dynamic mechanical tests. 

4.1. Quasi-static loading 

Although both tests are performed under quasi-static conditions, the effect of the strain 

rate on the mechanical behaviour is assessed by comparing the different test conditions. The 

rate of the strain measures associated to each test (stretch and shear parameter) is constant 

throughout the duration of the loading phase, since the displacements are applied linearly.  

The experimental stress-stretch curves obtained from the uniaxial compression test for 

different values of stretch rate are presented in Figure 7 (a) and (b) for the PUR70 and 

PUR95, respectively. The stretch rates studied range from -0.0011 s-1 to -0.2 s-1, which 

correspond to a crosshead speed of 0.0268 mm/s and 5 mm/s, respectively. Comparing the 

two rubbers, the effect of the material hardness on the stress is highlighted. Indeed, for the 

same level of stretch, the stress value in the PUR95 is approximately 3 times higher than the 

one measured for the PUR70. The influence of the stretch rate on the mechanical response is 

more pronounced in the PUR95 than in the PUR70, as shown in Figure 7 (for this reason the 

PUR95 was tested under more values of stretch rate). However, the difference in the stress 

value is lower than 10% when changing the stretch rate two orders of magnitude. Since the 

PUR70 rubber is not very stretch-rate sensitive, the highest value (-0.2 s-1) was used in the 

calibration of the material parameters. For the PUR95 only the lowest and highest stretch 

rate values (-0.0011 s-1 and -0.2 s-1, respectively) show significant discrepancies in 

comparison with the other three mid-range values studied and, therefore, the intermediate 

value of -0.025 s-1 was adopted in the calibration process. 
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       (a)          (b) 

Figure 7. Stretch rate sensitivity in the uniaxial compression test under quasi-static loading: (a) PUR70; (b) 

PUR95. 

  
       (a)            (b) 

Figure 8. Shear parameter rate sensitivity in the shear with superimposed normal compression test under 

quasi-static loading: (a) PUR70; (b) PUR95. 

Taking into account the geometry of the specimens, the shear parameter’s value is 

derived from the central plate displacement. Note that the meaning of the shear parameter 

is valid only up to the occurrence of slipping between the specimens and the plates, detected 

by the drops in the evolution of the stress. The experimental evolution of the shear stress 

for different values of shear parameter rate, obtained from the shear test with superimposed 

normal compression, is presented in Figure 8 (a) and (b) for the PUR70 and PUR95, 

respectively. The shear parameter rates studied range from 0.0104 s -1 to 0.038 s-1, which 

correspond to a crosshead speed of 0.05 mm/s and 0.15 mm/s, respectively. The relationship 

between the shear stress and the shear parameter is approximately linear up to the beginning 

of slipping. However, for the same value of shear parameter, the shear stress value in the 

PUR95 is approximately 3 times higher than the one measured for the PUR70, which is 

related with the material hardness. The effect of the shear parameter rate value on the shear 

stress evolution is negligible up to the start of slipping, particularly in the PUR70 (see 
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Figure 8 (a)). In order to guarantee a valid description of the mechanical response (before 

slipping), the shear parameter was limited to γ = 0.127 in a new experimental test used in 

the calibration procedure, which corresponds to 0.5 mm of imposed displacement in the 

central plate. The onset of slipping does not show a clear trend in function of the shear 

parameter rate, which may be a result of different misalignments in the setup (see Figure 

8). The lowest value of shear parameter rate was selected for this test considered in the 

calibration procedure in order to minimize the influence of possible misalignments in the 

assembly on the mechanical behaviour of the material. This ensures that the following 

relaxation period is carried our properly, i.e. without slipping between the specimens and 

the plates. 

Considering the uniaxial compression test, the comparison between the experimental and 

the calibrated normal stress evolution is presented in Figure 9 (a) and Figure 10 (a) for the 

PUR70 and PUR95, respectively. Regarding the shear test with superimposed normal 

compression, the comparison between the experimental and the calibrated shear stress 

evolution is shown in Figure 9 (b) and Figure 10 (b) for the PUR70 and PUR95, respectively. 

The set of material parameters calibrated for quasi-static loading conditions is listed in Table 2 

for both materials (PUR70 and PUR95). Note that, for the PUR95, the parameter C01 is zero. In 

this particular condition, the Mooney-Rivlin equation (Eq. (20)) reduces to the Neo-Hookean 

formula. Note also that, for both rubbers, the relaxation times ( j ) assume values of different 

orders of magnitude, highlighting the importance of considering several Maxwell elements in 

the calibration in order to achieve significant flexibility in the description of the stress 

relaxation, capturing both the short and the long-term behavior. 
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PUR70 0.3504 0.49316 0.05584 0.00001 0.10592 0.04575 240.05 0.05173 5042.61 15.62 

PUR95 3.7374 0 0.06988 0.11896 0.00001 0.00001 58.2 2.214 2051.3 2.014 

Table 2. Calibrated material parameters for the PUR70 and PUR95 under quasi-static loading. 

  
       (a)            (b) 

Figure 9. Calibrated curves versus experimental curves for the PUR70 under quasi-static loading: (a) 

Uniaxial compression; (b) Shear with superimposed normal compression. 
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The mechanical behavior of the PUR70 under quasi-static conditions is accurately 

predicted by the numerical model described in Section 2, as shown in Figure 9. The difference 

between the experimental and the numerical response is lower in the shear test with 

superimposed normal compression. Indeed, the maximum value of stress arising in the 

uniaxial compression test (end of the loading phase) is underestimated 3.8% (see Figure 9 (a)). 

This is a result of the low number of points collected in this stage, since the acquisition rate was 

the same for both loading and relaxation periods and the loading was performed in a short time 

frame. After the relaxation period of 200 s, the stress in the uniaxial compression test reduced 

to approximately 90% of the maximum absolute experimental value, while for the shear with 

superimposed normal compression it reduced to 91%. 

 

  
       (a)            (b) 

Figure 10. Calibrated curves versus experimental curves for the PUR95 under quasi-static loading: (a) 

Uniaxial compression; (b) Shear with superimposed normal compression. 

The same global comments are valid regarding the description of the mechanical behavior 

of the PUR95 under quasi-static conditions, as shown in Figure 10. After the relaxation period 

of 200 s, the normal stress (uniaxial compression) reduced to approximately 88% of the 

maximum absolute value, while the shear stress reduced to 83%. Considering the uniaxial 

compression test, the experimental stress is underestimated by the model in the loading phase. 

However, the difference is lower than 3.9% (relative error), which occurs at the end of the 

loading stage. Nevertheless, the relaxation period is captured with great accuracy. On the other 

hand, both the loading and the permanency stages are accurately predicted in the shear test with 

superimposed normal compression (see Figure 10 (b)). 

4.2. Dynamic loading 

Both the uniaxial compression test and the shear test with superimposed normal 

compression were carried out also under dynamic loading, using the Yerzley oscillograph. 

In order to evaluate the reproducibility of the experimental force measurements, three tests 

were performed under the same conditions for each PUR. Since the initial external 

perturbation (force) can be different in each test, the oscillatory component of the stress 
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the masses was removed from the total measured stress, obtaining the usual response of a 

free vibration system. This allows for a comparative analysis of the dissipative behavior of 

each PUR. The normalized first Piola-Kirchhoff stress evolution measured in the PUR70 is 

presented in Figures 11 (a) and (b) for the uniaxial compression test and the shear test with 

superimposed normal compression, respectively. The corresponding evolution for the 

PUR95 is presented in Figures 12 (a) and (b), respectively. The experimental stress and 

displacement were collected during 2 s, allowing to capture a significant number of periods. 

However, the comparison of the curves considers only the significant time of each test, 

which was established as the time required for the normalized stress to get below 5% of the 

maximum amplitude. These values of time are higher for PUR70 than for PUR95 and, for 

each material, are higher for the compression test. For both loading modes adopted and for 

both rubbers, the difference between the three tests is negligible, highlighting the 

reproducibility of the experimental normalized stress measured. 

The calibrated set of material parameters for both PUR70 and PUR95 under dynamic 

loading is listed in Table 3. Regarding the uniaxial compression test, the comparison between 

the experimental and the calibrated normal stress evolution is presented in Figure 13 (a) and 

Figure 14 (a) for the PUR70 and PUR95, respectively, while for the shear test with 

superimposed normal compression, the comparison between the experimental and the 

calibrated shear stress evolution is shown in Figure 13 (b) and Figure 14 (b) for the PUR70 and 

PUR95, respectively. 

 

  
       (a)            (b) 

Figure 11. Normalized stress evolution under free vibration of the PUR70: (a) Uniaxial compression; (b) 

Shear with superimposed normal compression. 
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       (a)            (b) 

Figure 12. Normalized stress evolution under free vibration of the PUR95: (a) Uniaxial compression; (b) 

Shear with superimposed normal compression. 
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PUR70 1.3759 0 0.12134 0.00001 1.42071 0.10877 0.00143 2.5793 0.00142 23744.1 

PUR95 6.0767 0 0.03528 0.00001 555.22 0.10911 0.00315 4.9948 3.095E-6 166509.1 

Table 3. Calibrated material parameters for the PUR70 and PUR95 under dynamic loading. 

Note that the parameter C01 is zero for both materials, i.e. the Mooney-Rivlin equation 

(Eq. (20)) reduces to the Neo-Hookean formula. The difference in the rubber’s hardness value 

has a noticeable impact when comparing the values of C10, which are much greater for the 

PUR95. Also, the relaxation times listed in Table 3 assume, similarly to the quasi-static 

calibrations, values of very different orders of magnitude. Figure 13 shows clearly that the 

calibrated material parameters can approximate almost perfectly the behavior of the PUR70 for 

the two experimental tests performed. For the PUR95, the calibrated material parameters can 

approximate very precisely the dynamic behavior of the shear with superimposed normal 

compression test. However, for the uniaxial compression test the calibrated stress curve 

underestimates the amplitude of the experimental stress. 
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           (a)                (b) 

Figure 13. Calibrated curves versus experimental curves for the PUR70 under dynamic loading: (a) 

Uniaxial compression; (b) Shear with superimposed normal compression. 

  
           (a)                  (b) 

Figure 14. Calibrated curves versus experimental curves for the PUR95 under dynamic loading: (a) 

Uniaxial compression; (b) Shear with superimposed normal compression. 

Comparing directly Figure 13 and Figure 14 in terms of each loading mode, it is clear 

that, for a given instant, the dynamic response of the PUR95 presents a greater number of 

completed periods, due to its increased stiffness. This is particularly evident in the uniaxial 

compression test. For each rubber, when comparing both loading modes at a similar instant, a 

greater number of completed periods is observed in the shear with superimposed normal 

compression test. Regarding the comparison between the calibrated material parameters for the 

quasi-static loading (see Table 2) and dynamic loading (see Table 3) one can notice that, for the 

latter, the parameters associated with the viscoelasticity have a much broader range, with 

several orders of magnitude of difference between Maxwell elements. As the time scale of the 

dynamic loading is significantly lower than that of the quasi-static loading, for industrial 

applications with very high cadence, the calibration of parameters in a dynamic manner can be 

of particular interest. 
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5. CONCLUSIONS 

This study presents a hyper-viscoelastic constitutive model to characterize the mechanical 

behavior of two polyurethane rubbers. The hyperelastic component is described by the Mooney-

Rivlin model and the viscoelastic component by four Maxwell elements, leading to a total of 

10 material parameters. The calibration process is performed by applying the least squares 

method to fit the first Piola-Kirchhoff stress curves of the model to the experimental curves. 

Two loading modes were considered, uniaxial compression and shear with superimposed 

normal compression. Besides, each experimental test is performed under both quasi-static and 

dynamic loading. For the quasi-static loading, a relaxation period was imposed after the loading 

phase, allowing for stress relaxation of the polyurethanes. The dynamic loading consisted of 

free vibration tests to capture the dissipative behavior, performed using Yerzley oscillograph. 

Since there is a substantial difference in the time frame of the quasi-static and dynamic loading 

it is not advisable to calibrate these types of loading simultaneously, due to the reduced 

precision achieved with the numerical solution. Therefore, the calibration of the material 

parameters was carried out independently for each type of loading. It is very important to know 

the specific time frame of a certain practical application involving these materials to select the 

proper set of calibrated parameters. 

Experimental tests for both materials with both loading modes at different strain rates 

allowed to identify the PUR95 as the most strain-rate sensitive rubber. Regarding the calibration 

processes, the results showed that the calibrated material parameters can reproduce very 

accurately the mechanical behavior of the PUR70, for both ways of loading. For the PUR95, a 

good agreement with the experimental results was found for the quasi-static loading. For the 

dynamic loading calibration, the shear with superimposed normal compression was described 

accurately, while the uniaxial stress curve underestimates the experimental stress. The 

calibrated material parameters for the dynamic loading, particularly the ones associated with 

the viscoelasticity, vary between a broad range of values, with several orders of magnitude of 

difference between Maxwell elements. For industrial applications with very high cadence of 

production (few seconds), a dynamic calibration of the parameters can be more suitable to 

describe the material’s behavior. 
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