Study of the frictional contact conditions in the hole expansion test

D.M. Neto1 • P.D Barros1 • M.C. Oliveira1 • J.L. Alves2 • L.F. Menezes1

1CEMMPRE, Department of Mechanical Engineering, University of Coimbra, Portugal

2CMEMS, Department of Mechanical Engineering, University of Minho, Portugal
Introduction

Advanced High Strength Steels (AHSS)

- Increasing use in the **automotive industry** over the past 20 years
- Good combination of **high strength** and **large elongation** (DP, TRIP, TWIP, etc)
- Improve strength and reduce weight of automotive bodies for **safety** and **fuel efficiency**

![Volvo XC40](image-url)
Introduction

Forming Limit Diagram (FLD)

- Predict a **success or failure** of real sheet forming processes
- High **accuracy** only for **low grade steel sheets**
Introduction

Edge cracking

- **Edge cracking** occurring during the stretch-flanging process of AHSS cannot be accurately predicted by the FLD

- The **AHSS edge cracking** resistance is commonly evaluated by the Hole expansion test
Introduction

Hole expansion test

- The sheet specimen contains a central hole and the tools are axisymmetric.
- The hole expansion ratio (hole edge crack) defines the edge cracking resistance.

Cylindrical punch \leftrightarrow Fractured specimen \rightarrow Conical punch
Hole expansion test

Influence of the process conditions on the hole expansion ratio

- The cut edge conditions in the hole (punched, water-jet, EDM)
- The friction conditions in contact area (interface punch–specimen)

Objective: numerical analysis of the frictional contact conditions in the hole expansion test
Hole expansion test

Test conditions from the Benchmark 1: Hole expansion of a high strength steel sheet

- Dual Phase steel (DP980) sheet with 1.2 mm of thickness
- Central hole with 30 mm of diameter
- Periphery of the blank is clamped using a draw-bead (force about 800 kN)

Geometry of the forming tools and specimen used in the hole expansion test
Hole expansion test

Finite element model

- **DD3IMP** in-house finite element code (implicit time integration)
- **1/4 of the model** (symmetry conditions)
- Forming tools are assumed **rigid**
- Plastic behavior of the specimen modelled by the **Swift law** (isotropic work hardening) and the **Hill’48 yield criterion**

\[
\sigma = 1520.5 (0.00021 + e^p)^{0.1201}
\]

\[
\begin{align*}
F &= 0.426; \\
G &= 0.591; \\
H &= 0.408; \\
N &= 1.577
\end{align*}
\]
Hole expansion test

Finite element model
- Forming tools discretized by Nagata patches
- Blank discretized by **linear** hexahedral (8-nodes) finite elements

- 64,800 finite elements
- 2736 patches
- 2526 patches
- 3 layers of finite elements in the thickness direction
- 100 finite elements in the circumferential direction

D.M. Neto (diogo.neto@dem.uc.pt)
Hole expansion test

Finite element model

- The **Coulomb friction law** is adopted
- Lubricated punch–blank interface
 - 4 **constant** values of friction coefficient
 - **Pressure-dependent** friction coefficient
- Experimental data from *Gil et al (2016)*
 - Strip drawing test
- **No lubricant** on the interfaces between the blank and the upper/lower dies ($\mu=0.15$)

![Friction coefficient vs Contact pressure graph](image.png)

- **Exp. data (DP780)**
- **Friction model**: $\mu = 0.098 + 0.154 \exp(-1.085 p^{0.32})$
 - $\mu = 0.15$
 - $\mu = 0.10$
 - $\mu = 0.05$
 - $\mu = 0.00$

Finite element model

- The **Coulomb friction law** is adopted
- Lubricated punch–blank interface
 - 4 **constant** values of friction coefficient
 - **Pressure-dependent** friction coefficient
- Experimental data from *Gil et al (2016)*
 - Strip drawing test
- **No lubricant** on the interfaces between the blank and the upper/lower dies ($\mu=0.15$)
Hole expansion test

Finite element model

- Inclusion of a **layer of Teflon** (0.3 mm thick) between the blank and the punch head
 - **No sliding** between the blank and the Teflon
 - **No friction** between the Teflon and the punch

- Teflon is assumed **elastoplastic**
 - $E=600$ MPa and $\nu=0.4$
 - $\sigma=46.8(0.014+\varepsilon^p)^{0.43}$
Overview of the hole expansion test simulation

Equivalent stress distribution
Results and discussion

Punch force evolution

- The predicted punch force **increases** with the friction coefficient
- The pressure-dependent friction coefficient provides results identical to $\mu=0.15$
 - Very high contact pressure at the punch head
- **Negligible influence** of Teflon layer on the predicted force evolution

![Graph showing punch force evolution vs punch displacement and contact pressure]

- $\mu=0.00$ (Teflon)
- $\mu=0.00$
- $\mu=0.05$
- $\mu=0.10$
- $\mu=0.15$
- $\mu=f(p)$

Contact pressure [MPa]

- 350
- 311
- 272
- 233
- 194
- 156
- 117
- 78
- 39
- 0

Punch force [kN]

- 180
- 160
- 140
- 120
- 100
- 80
- 60
- 40
- 20
- 0

Punch displacement [mm]

- 0
- 3
- 6
- 9
- 12
- 15
- 18
- 21

5 mm of punch displacement

15 mm of punch displacement
Results and discussion

Hole diameter

- The predicted hole diameter decreases with the friction coefficient
 - Low sliding between blank and punch head due to the high friction forces
- The holes are not circular and the shape is affected by the plastic anisotropy
 - Hole diameter slightly larger around the diagonal direction

![Graph showing exponential growth of the hole diameter](image1.png)

![Graph showing hole diameter vs punch displacement](image2.png)

15 mm of punch displacement
Results and discussion

Thickness evolution

- Thickness reduction **similar for both points** on the hole edge
- More pronounced under **frictionless contact** conditions
- Slight increase due to the **localized necking** near the diagonal direction

![Graphs showing thickness evolution](image)
Results and discussion

Thickness distribution

- Thickness distribution evaluated in the 3 different directions (RD, DD and TD)
 - Significantly lower along the DD and similar distributions along RD and TD
- The inclusion of friction leads to a global decrease of the thickness strain in the flat region of the blank

![Graph with thickness distribution](image1)

<table>
<thead>
<tr>
<th>Initial radial coordinate [mm]</th>
<th>Thickness [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD (μ=0.00)</td>
<td>1.08</td>
</tr>
<tr>
<td>DD (μ=0.00)</td>
<td></td>
</tr>
<tr>
<td>TD (μ=0.00)</td>
<td></td>
</tr>
<tr>
<td>RD (μ=0.15)</td>
<td></td>
</tr>
<tr>
<td>DD (μ=0.15)</td>
<td></td>
</tr>
<tr>
<td>TD (μ=0.15)</td>
<td></td>
</tr>
</tbody>
</table>

15 mm of punch displacement (before necking)

![Graph with thickness distribution](image2)

19 mm of punch displacement (after necking)
Results and discussion

Thickness distribution after necking (19 mm of punch displacement)

- The **onset of necking** occurs always in the **same localization** but the instant for which it arises depends on the friction coefficient (friction postpones)

\[
\mu = 0.00 \text{ (Teflon)}
\]

\[
\mu = 0.10
\]

\[
\mu = 0.15
\]

\[
\mu = 0.00
\]

\[
\mu = 0.05
\]

\[
\mu = f(p)
\]
Conclusions

- Numerical study of the frictional contact conditions between the blank and the punch head in the hole expansion test
- Coulomb friction law comprising both constant and the pressure-dependent friction coefficients
- Results obtained with the pressure-dependent friction coefficient identical to the ones obtained considering a constant friction coefficient (evaluated at large contact pressure)
- Both the punch force and the hole diameter evolutions are only slightly affected by the friction coefficient
- Necking localization (near the diagonal direction) is independent of the friction coefficient
- Increasing the friction coefficient leads to a global decrease of the thickness strain in the flat region of the blank, postponing the onset of necking
Acknowledgements

This research work was sponsored by national funds from the Portuguese Foundation for Science and Technology (FCT) under the projects with reference P2020-PTDC/EMS-TEC/0702/2014 (POCI-01-0145-FEDER-016779) and P2020-PTDC/EMS-TEC/6400/2014 (POCI-01-0145-FEDER-016876) by UE/FEDER through the program COMPETE 2020

The author is also grateful to the FCT for the Postdoctoral grant SFRH/BPD/101334/2014
Thank you for your attention!